
Musical Micro:bit

 Teacher Guidance

Curriculum Links 2

Computation:

(PS2) I can create simple algorithms and am beginning to explain errors.

(PS2) I can follow instructions to build and control a physical device.

(PS2) I can follow algorithms to determine their purpose and predict
outcomes.

(PS3) I can identify repeating patterns and use loops to make my
algorithms more concise.

Design Thinking:

(PS2) I can explore how different component parts work together.

Links to Science and Technology AoLE

Expressive Arts:

(PS2) I can explore and experiment with and then select appropriate
creative techniques, practices, materials, processes, resources, tools and
technologies.

(PS2) I am beginning to apply techniques in my creative work with
guidance and direction.

(PS2) I can create my own designs and work collaboratively with others to
develop creative ideas.

Links to Other AoLEs

Learning Rationale 3

This resource provides Critical Thinking and Problem-Solving
opportunities. Students are required to follow and design an algorithm using
block-based programming. They are able to analyse errors in the code,
identify solutions, and deduce the next steps in the code.

Learners will also use Creativity and Innovation. They are encouraged to
discuss and implement strategies to improve their program. Learners are
also tasked with designing and creating music playing devices and
melodies. This workshop gives learners the opportunity to explore chords
and pitches, design their own micro:bit piano, and combine programming
and music to create melodies.

The Data and Computational Thinking section of the DCF applies to this
resource. Students will learn to create and analyse algorithms, detect and
solve coding errors, and identify possibilities for improved efficiency using
loops and events.

The Four Purposes and Cross-Curricular Skills

This resource provides learners with the opportunity to create simple
algorithms with a demonstrable application, using a block-based
programming language. It introduces concepts such as loops and event-
based programming which are critical to most common programming
languages. The resource also explores basic music theory such as chords
and pitch changes, challenging the learners to design and create their own
music playing devices and melodies. This can be expanded to introduce
students to text-based programming such as Python.

Why Is Learning This Important?

Introduction

In this suggested approach we use the following colours to differentiate the
types of activities:

• Yellow - Explain. Teachers should explain the slide/example to the class.

• Green - Discuss. Teachers should start an open discussion with the class to
get them to feedback some answers/ideas.

• Purple - Activity. Students are expected to complete an activity whether it
be in their workbooks or on the computer, followed by a discussion of their
solutions.

• Green - Introduction/Conclusion. The introduction/conclusion is also
colour coded green. Teachers should hand out materials in the introduction
and conclude the session and collect materials at the end.

Suggested Approaches Key

Begin with introductions, and a brief explanation of the Technocamps
programme, before handing out any resources required by learners and any
additional aids for learners with additional learning needs.

Introduction

We will be learning about musical chords and pitch changes, and how we
can use programming to create our own micro:bit pianos to make music.

Explain: Topics Covered Today

4

Introduction

The micro:bit is a very small computer that is used to teach how hardware
and software work together.

It has several components: 25 Led lights that can be used to display
images, sensors that can detect light/temperature/movement, buttons, and
radio and bluetooth antenna.

We can program the micro:bit to take input, display output, process
information, communicate with other micro:bits and many more things.

Explain: What is micro:bit?

5

Provide each student with a micro:bit and ask them what they know about
it. Have they used them before? Can they tell you what some of the
components are (e.g. buttons, LED lights, USB connector)?

Discuss: Micro:bit

Programming is telling a computer what to do using a set of ordered
instructions. The set of ordered instructions is called an algorithm. The
language used to tell the computer what to do is called a programming
language.

Introduce the students to the MakeCode editor and explain how to connect
their micro:bit devices.

Explain: What is programming?

Melody

Each time you make changes to your program you need to click on the
download button before the micro:bit can run the program.

Explain: Downloading Programs

6

Program the micro:bit to play a piece of music. Drag the play tone command
into the on start block and choose a note from the dropdown menu.

Micro:bit also has preset melodies. Try dragging the start melody command
to the on on start block and choose a melody from the drop-down menu.

Activity: Melody

Headphones

Micro:bits have a built in speaker that can output sound. However in a class
of students all playing different notes and melodies, we can connect
headphones to make it easier to hear your own.

The headphones need to be connected to the pins at the bottom of the
micro:bit using crocodile clips.

Explain: Headphones

Connect the headphones to the micro:bit. Connect pin 0 to the tip of the
headphone plug and the GND (ground) pin to the longer part of the
headphone, as shown in the diagram on the slide.

Activity: Connecting Headphones

7

Ask the students to create their own melody using several play tone
commands, one after the other in the on start block.

Give them some time to be creative and see what melodies they can make.

Activity: Make Your Own Music

Extended Melody

Ask the students to build and run the program on the slide. It plays a longer
melody with repeated block segments.

Activity: Extended Melody

8

The code only plays a short tune but already includes a lot more blocks.

Discuss what the code would look like if the song was two, five, or hundreds
of times longer.

Ask the students how we could reprogram this without adding blocks for
each individual note.

The solution is to use loops. Our melody has two repeated blocks of notes:
CDEC and EFG. These segments can be repeated using loops instead of
writing out the code twice.

Discuss: Extended Melody

Loops 9

Loops can be used to repeat commands in a program without typing out
each action every time. They can be repeated forever, for a certain number
of times, or for a given condition.

In MakeCode, these are found in the Loops section.

For a loop to have a purpose, an action command needs to be placed
inside it.

All MakeCode programs start with a default forever loop. This loop will run
a set of commands until the micro:bit is unplugged or reset. You can only
have one forever loop in a micro:bit code.

Explain: Loops

Ask the students to create a program that repeats a short melody. They can
do this by adding the play note commands to the forever loop.

Activity: Melody Loop

Explain the difference between the on start block and the forever loop. Ask
the students what they think would happen if they put the code from the
melody loop activity in the on start block instead of the forever block.

Answer: The code would run once and then stop without repeating.

Discuss: Forever vs. On Start

Jukebox 10

A jukebox is a music playing device that gives you the choice of multiple
songs to play.

So far, the micro:bits can only play one song. We need to program it to play
several different songs, and give the user the choice of which one to play. To
do this we use events.

Explain: Jukebox

Each micro:bit has two buttons: A on the left and B on the right.

These buttons allow us to choose which action to take without
reprogramming the micro:bit each time.

For example, we can play one song when we press button A and a different
song when we press button B.

These commands are found in the Input section.

Explain: Events

Create a program that plays a note when button A is pressed.

Add a play tone command to the on button A pressed block.

Activity: Events

Jukebox continued 11

Ask the students to add another input block to play a different note when
button B is pressed.

Extend this program to play a song when the buttons are pressed, instead of
single note. This can either be a preset melody, or a custom one.

Now the students will have their own jukebox.

Activity: Jukebox

micro:bit Piano 12

Instead of using buttons to play notes or a melody, we can connect our
input device. To do this we use the pins at the bottom of the micro:bit, just
like we did to connect the headphones.

We can make our instrument so that, when we play it, an input signal will be
sent to the micro:bit. The micro:bit will then produce a sound output.

Explain: Instrument Input

We’re going to make our own cardboard piano that we can connect to the
micro:bit.

Instruct the students on how to make these:

Cut out three tin foil rectangles. Glue the tin foil rectangle to each side of the
cardboard, wrapping them around one side. The foil will represent keys on a
piano.

Activity: Building a Piano

Attach three crocodile clips to the cardboard piano, one to each piano “key”.
Connect the other ends of the crocodile clips to pin 1, pin 2, and the GND pin,
as seen on the slide.

Make sure all the students have successfully constructed and connected their
cardboard pianos.

Activity: Connecting the Piano

micro:bit Piano continued

Explain: Turtle Commands

13

Discuss which blocks will be required to build the code for playing micro:bit
music on the cardboard piano.

Instead of using the buttons as input, we need to use the pins. There are on
pin P0 pressed blocks in the Input section.

When we press on one of our piano keys together with the ground pin, we
complete an electrical circuit that sends a signal to the micro:bit.

Discuss: Piano Code

Ask the students to write a code that allows them to play notes using their
cardboard pianos.

Add on pin P1 pressed and on pin P2 pressed blocks to the code. In each
block add a different musical note.

Allow the students to experiment with some different musical outputs using
the pins.

Activity: Piano Code

Extension: Another Note 14

So far, we can get our piano to play one note when pin P1 is pressed and
another note when pin P2 is pressed.

We have run out of pins to use to create more sound, but there is a way
around this.

We can program the micro:bit to play a third different output when both
pins are pressed at the same time. There is no input block for this, so how
do we program it?

We need to use conditionals.

Explain: Additional Input

Conditions help us perform different actions based on different conditions.
These conditions should always result in Yes/No or True/False.

For example:

If my homework is done, then I can go outside to play.

If I have eaten my dinner, then I can have dessert.

Ask the students for more examples.

In MakeCode, the if-statements are found in the Logic section.

Explain: Logic and If-statements

Extension: Another Note

Ask the students to write a code that allows us to play a third note using
conditionals. You will probably have to talk through building this code, step-by-
step. You can ask the students to predict what the next step will be.

1. Add an if true then block to the forever loop and extend it to allow for
three statements: pin 1 pressed, pin 2 pressed, pin 1 and 2 pressed
together.

2. Add a pin P1 is pressed and pin P2 is pressed command to the if block.

3. Add two different play tone commands to the if statement.

4. Drag an and block from the Logic section to the final segment of the if
block. Add a pin P1 is pressed and a pin P2 is pressed command to the
and block.

5. Add another play tone command.

Activity: Another Note

15

Chords

Chords are a combination of multiple notes playing simultaneously, to make
a sound. Usually they consist of three notes played together.

The micro:bit can not really play a chord since it can only play a single note
at the time. However, if we play three notes quickly, one after the other, it can
sound like a “broken” chord.

We can do this by adding three notes back-to-back to our input blocks.

Explain: Chords

16

Ask the students to make a program that plays a different chord when a
different pin is pressed.

Two chord examples are shown on the slide (F major and A minor)

Activity: Chords

Ask the students what they know about chords.

Discuss:

Musical Pitch 17

Our micro:bit pianos can now play notes and chords, but we can’t yet
change these sounds without reprogramming and downloading the code
again.

It is possible to add more input blocks to higher or lower the pitch of the
note or chord without changing the code every time. The pitch of the note
doubles (gets higher) when you move up an octave and halves (gets lower)
when you move down an octave.

To do this we need to define the notes as variables that can be changed.

Explain: Pitch

Variables 18

Variables are items that can remembered and changed by the micro:bit. It
gives us a place to store something.

Variables can take several different forms such as a number or a text.

We can change the variable’s value and use it in many ways in our code.
But first, we need to define it.

In MakeCode, they are found in the Variables section.

Explain: Variables

Instruct the students on how to create variables.

To create a variable, click on the Variables section and Make a Variable.

Create four variables: A, C, E, F representing four musical notes.

There should now be a few more commands available for selection in the
Variables section.

Activity: Creating Variables

Changing Pitch

Explain: Stamp

Instruct the students on how to make a micro:bit piano that can change the
pitch of the chords. The steps are shown on the slides. You will probably need
to talk the students through each step but you should ask them for ideas at
each step.

1. Start by setting each of the variables to the frequency of their note. A =
440, C = 523, E = 659, F = 349.

2. Now we need to tell the micro:bit what musical output to play when the
pins are pressed. You have already done this when you programmed the
chords. Instead of the preset notes, drag your new variables to the play
tone blocks.

3. Drag and drop the on button A pressed block to your code and add four
set variable to 0 commands to the block. To make the pitch higher, we
need to double the frequency of the notes.

4. Drag and drop four multiplication commands from the Math section to
the set commands.

5. Drag and drop the note variables from the Variables section to the
multiplication commands, and multiply them by two.

6. Repeat steps 3-6 but using division commands for when button B is
pressed.

Now you should have a working micro:bit piano that can play two chords
when pressing the keys, and change the pitch higher or lower when pressing
buttons A and B, respectively.

Activity: Changing Pitch

19

Developing and Differentiating 20

•An extension task has been provided to challenge students to improve
their code using by adding a third output note, using conditional
statements.

• Some learner may need more guidance in assembling the code than
others. Since this workshop is aimed at ages 9-11, there might be several
learners with little coding experience so will require step-by-step
instructions in assembling the blocks. This is especially true for the last
program that changes the pitch of the output. Other learners can use
their previous coding experience to write the algorithm without any code
provision.

• The micro:bit website and editor allow for navigation using accessibility
features such as a screenreader, or speech recognition software.

Differentiating for Learners

• Micro:bit has a user-friendly Python editor. This workshop can be adapted
to introduce learners to a text-based programming language.

• There are several additional extension tasks that can teach learners about
different micro:bit features. For instance they can produce visual output to
display which note is being played. Learners can also create a
metronome program that teaches about musical tempo and beat.

Where To Go Next

