

Algorithms

Activity: What
is an

Algorithm?

Algorithms

An Algorithm is a set of simple instructions that are done in a
certain order to solve a problem.

We use algorithms all the time in everyday life. An example is
making and eating toast.

Activity:
Making a Cup

of Tea

Algorithms

It is important to remember when writing an
algorithm to keep instructions:

• Simple.
• In the correct order.
• Unambigious
• Relevant to solving the problem at hand.

Start

End

Drink Tea

Put on Hat

Make Tea

Activity:
Define

Algorithms

Activity: Guess Who
Cristiano Ronaldo Rihanna

Drake Kylie Jenner

Beyoncé Lionel Messi

Serena Williams Robert Downey Jr.

Activity:
What is

Decomposition?

Decomposition

Decomposition is the process
of breaking a complex
problem into smaller
component parts.

Real world examples of using
decomposition:
• Creating a video game.
• Complex maths problems.
• Cooking.
• Cleaning your room!

Activity: Decomposition of a
Game

When creating a game, what would
we need to think about?
Think of your favourite game. How
could you break it down into the
important features?
For example:
• What is the objective of the

game?
• Who are the characters?
• What is the world like?
• Is it single or multi player?
• How do the characters interact?

Activity: LEGO
Building

LEGO Building Reflection

The activity was a great way of
showing the importance of giving
clear, simple and detailed
instructions.

It highlights the importance of
decomposition when faced with a
complex task. Most complex tasks
can be broken down into smaller
problems.

Activity: Get
Artistic

Activity: Get
Artistic

Reflection

Abstraction

Abstraction – is the process of removing
unnecessary detail and simplifying.
Abstraction is used to remove
unnecessary detail from a real-world
situation and to model the simplified result
in an algorithm or program.

Real world examples of abstraction in
action:
• In driving.
• In programming.
• In teaching.

Teachers using Abstraction

Teachers using Abstraction

1. Cytoplasm, 2. Nucleus, 3. Cell Membrane, 4. Mitochondrion

Teachers using Abstraction

Teachers using Abstraction

Activity:
What is

Abstraction?

Flowcharts

Flowchart Conventions

Name Symbol Usage

Start or Stop/End Signifies the start or
end of a sequence.

Process An instruction.

Input/Output Data received or sent
by a computer.

Decision A condition which is
either true or false.

Subroutines Calls a subroutine

Direction of Flow Connects symbols.

Sequence,
Selection,

Iteration and
Subroutines

Sequence

Sequence: An action, or event, leads to the next ordered action
in a predetermined order.
Recall the making and eating toast example:

Sequences

Start

End

Input/Output

Process

Input/Output

Start

End

Enter your age:

result = age + 2

"In two years

you will be

(result) years old"

Activity: Making a Cup of Coffee

In your work books try to put all of the instructions for making a
cup of coffee into the correct sequence.

Making a Cup of Coffee Solution

Start Get cup Fill kettle with water Turn on kettle

Coffee granule in cup

Once kettle stops

boiling. Pour boiling

water into cup

Add sugar or milk or

none at all
Stir and drink

End

Selection

In selection, a question is asked, and depending on the answer,
the program takes one of the two courses of action.

Example: Waking up in the morning

Start Alarm goes off Press snooze and go
back to sleep

Get ready for school End

Is it a weekday?
No

Yes

Selection Flowchart

Activity: Vertebrates Flowchart

Write a flowchart with appropriate questions to be able to
differentiate between each of the 5 classes of Vertebrates.

Think about what differentiates them and how you would
structure your flowchart.

Amphibians

Mammals Fish

Reptiles

Birds

(You can research vertebrate classification on your computers)

Vertebrates Solution

Start

Is cold

blooded

Has

scales
Lays eggs

"This is a

Mammal."

"This is a

Bird"

"This is an

Amphibian"

Lives in

water

"This is a

Reptile"

Stop

"This is a

Fish"

No No No No

Yes Yes Yes Yes

Iteration

Example: Simple Traffic Lights
• What instructions would you use for

this process?
• What needs to be iterated?
• How could you show that in a

flowchart?
• Does this process ever end?

An iteration is a single pass through a set of instructions. Most
programs contain a set of instructions that are executed over and
over again. The computer iterates through the loop.
Some processes include steps or a series of steps that are iterated.

Simple Traffic Lights
Start

Wait 30 seconds

Turn red light on

Wait 2 seconds

Turn yellow light on

Wait 30 seconds

Turn green light on

Turn yellow light on

Turn red light off

Turn green light off

Wait 2 seconds

Turn yellow light offTurn yellow light off

Activity: Login System Flowchart

Create a flowchart for a
program which asks a user for
a password:
• If the password is incorrect it

should output the message
“Password incorrect. Please
Try Again.” and take the
user back to the log in
screen.

• Otherwise it should say
“Password accepted.
Welcome!” and end the
program.

Login System Solution

Start

End

"Please enter
your password."

Password
correct

"Password
accepted.
Welcome"

yes

"Password incorrect.
Please Try Again."

no

Activity: Login System in Python

Using the flowchart for the
login system, write a python
program that satisfies the brief.

Start

End

"Please enter
your password."

Password
correct

"Password
accepted.
Welcome"

yes

"Password incorrect.
Please Try Again."

no

Subroutines

Subroutines are a sequence of instructions that perform a specific
task.

Start

ProcessInput/Output

Subroutine

Input/Output

End

Process

End

Start

Subroutine

Subroutines

For example we could have a subroutine that calculates the
volume of a cube when given the length of one side:

Start

cubeVolume(sideLength)

Start
cubeVolume

result = sideLength ** 3

return result

Stop
cubeVolume

End

sideLength = 3

print(result)

Activity: Pizza Flowchart

Create a flowchart on cooking pizza or chips in the oven. Try to
make use of all of the flowchart components we have talked
about:
• Sequences
• Selection
• Iteration
• Subroutines

Extension Task: In addition to your flowchart try using the
subroutine symbol, maybe a timer to tell you when to take the
pizza/chips out.

Pizza Flowchart Solution

Start
Get oven tray and

place pizza or chips
in the oven tray

Preheat oven to
appropriate

temperature shown in
packaging

Put tray with pizza or
chips inside the oven

Look at
recommended
cooking time in

packaging

Is food done
yet?

Yes

Take out pizza or
chips

Put a timer on

No

Keep in the oven for
2 more minutes

Start timer Wait until designated
time limit Turn on Alarm sound

Wait 2 minutes or
when user turns off

alarm

Turn Alarm offStop timer

End

Flowchart Shape Recap

Name Symbol Usage

Start or Stop/End Signifies the start or
end of a sequence.

Process An instruction.

Input/Output Data received or sent
by a computer.

Decision A condition which is
either true or false.

Subroutines Calls a subroutine

Direction of Flow Connects symbols.

Flowchart Shape Recap

Name Symbol Usage

Start or Stop/End

Process

Input/Output

Decision

Subroutines

Direction of Flow

Python Syntax

Action Python code

Assign a variable myVariable = 42
myOtherVariable = “hello”

Print something print(“This will be printed”)

Getting input age = input(“How old are you?”)

if / else if age > 17:
print(“You are an adult”)

else:
print(“You are not an adult yet”)

for loop for i in range(0,10):
print(i)

while loop while(True):
print(“hello again”)

Activity:
Login System

in Python

Simple Interest vs. Compound
Interest

Most bank accounts will pay you interest on money you have
deposited with them.

Imagine that you have £1000 in a bank account. Would you
rather I gave you:

• 100% interest after 10 years.

• 10% interest every year for 10 years.

Calculating Compound Interest

Year Base Amount Interest (Base * Interest Rate) Total

1 £1000 £1000*0.1 = £100 £1000+£100 =
£1100

2 £1100 £1100*0.1 = £110 £1100+£110 =
£1210

3

4

… … … …

10 ???

GCSE Compound Interest

First, Abstract Away The
Unimportant Details

First, Abstract Away The
Unimportant Details

startingAmount = £380

First, Abstract Away The
Unimportant Details

startingAmount = £380
time = 6 years

startingAmount = £380
time = 6 years
interestRate = 2.54% (Divide this by 100 to get the decimal 0.0254)

First, Abstract Away The
Unimportant Details

startingAmount = £380
time = 6 years
interestRate = 2.54% (Divide this by 100 to get the decimal 0.0254)
costOfBike = £460

First, Abstract Away The
Unimportant Details

startingAmount = £380
time = 6 years
interestRate = 2.54% (Divide this by 100 to get the decimal 0.0254)
costOfBike = £460

First, Abstract Away The
Unimportant Details

The First Year

We have the initial £380. The interest gained which would be:

£380 x 0.0254 = £9.652

Therefore after the first year we have: £380 + £9.652 = £389.652

The Second Year

After the first year we have: £389.652

Now we do the same for the second year, however the amount
we have to start with has increased:

£389.652 + (£389.652 x 0.0254) = £399.54916

The Final Year

We repeat this process until we have done it 6 times and we
reach the final value of £441.72:

Starting amount: £380
1st Year: £389.652

2nd Year: £399.549

3rd Year: £409.697

4th Year: £420.104

5th Year: £430.774

6th Year: £441.716

Activity:
Compound

Interest

Activity: Compound Interest in
Python

Create a Python program which will allow a user to input an initial
value, a number of years for saving, an annual interest rate (you’ll
need to decide whether to ask for a decimal or percentage
value) and the cost of an item to compare to at the end.

The program will then need to calculate and output the final
balance and compare it to the cost of the item and output if the
balance is enough to purchase the item.

Is There An Easier Way?

Can we implement this without using a loop?

Is There An Easier Way?

Can we implement this without using a loop?

First we have an initial amount 𝑨, and in the first year we are
adding to it this amount multiplied by the interest rate 𝑹. therefore
after the first year the total 𝑻 is given by:

Is There An Easier Way?

Can we implement this without using a loop?

First we have an initial amount 𝑨, and in the first year we are
adding to it this amount multiplied by the interest rate 𝑹. therefore
after the first year the total 𝑻 is given by:

𝑇 = 𝐴 + 𝐴𝑅 which we rewrite as 𝑇 = 𝐴 1 + 𝑅

Is There An Easier Way?

Can we implement this without using a loop?

First we have an initial amount 𝑨, and in the first year we are
adding to it this amount multiplied by the interest rate 𝑹. therefore
after the first year the total 𝑻 is given by:

𝑇 = 𝐴 + 𝐴𝑅 which we rewrite as 𝑇 = 𝐴 1 + 𝑅

Why?

Equation for Compound Interest

After the second year we just repeat the process of multiplying
our amount by the ratio 1.0254

So every year we just multiply by another 1.0254 or another
1 + 𝑅 .

Equation for Compound Interest

So every year we just multiply by another 1.0254 or another
1 + 𝑅 .

Written out another way it looks like this:

First Year: 𝑇 = 𝐴 1 + 𝑅

Second Year: 𝑇 = 𝐴 1 + 𝑅 1 + 𝑅
Third Year: 𝑇 = 𝐴 1 + 𝑅 1 + 𝑅 1 + 𝑅

Fourth Year: 𝑇 = 𝐴 1 + 𝑅 1 + 𝑅 1 + 𝑅 1 + 𝑅
Fifth Year: 𝑇 = 𝐴 1 + 𝑅 1 + 𝑅 1 + 𝑅 1 + 𝑅 1 + 𝑅

Sixth Year: 𝑇 = 𝐴 1 + 𝑅 1 + 𝑅 1 + 𝑅 1 + 𝑅 1 + 𝑅 1 + 𝑅

Equation for Compound Interest

So every year we just multiply by another 1.0254 or another
1 + 𝑅 .

First year: 𝑇 = 𝐴 1 + 𝑅
Second Year: 𝑇 = 𝐴 1 + 𝑅 1 + 𝑅
Third Year: 𝑇 = 𝐴 1 + 𝑅 1 + 𝑅 1 + 𝑅
Fourth Year: 𝑇 = 𝐴 1 + 𝑅 1 + 𝑅 1 + 𝑅 1 + 𝑅
Fifth Year: 𝑇 = 𝐴 1 + 𝑅 1 + 𝑅 1 + 𝑅 1 + 𝑅 1 + 𝑅
Sixth Year: 𝑇 = 𝐴 1 + 𝑅 1 + 𝑅 1 + 𝑅 1 + 𝑅 1 + 𝑅 1 + 𝑅

Simplifying:
𝑇 = 𝐴 1 + 𝑅 1 + 𝑅 1 + 𝑅 1 + 𝑅 1 + 𝑅 1 + 𝑅 = 𝑨(𝟏 + 𝑹)𝟔

So with 𝑛 amount of years:
𝑻 = 𝑨 𝟏 + 𝑹 𝒏

Sorting
Algorithms

Bubble Sort

Sometimes we have a list of
numbers that we would like to
be sorted. Algorithms that can
do this are called sorting
algorithms and an example of
a sorting algorithm is Bubble
sort.

In Bubble sort, the larger
numbers ‘bubble’ up to the
top of the list.

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

6 5 3 1 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 6 3 1 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 6 3 1 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 6 1 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 6 1 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 7 8 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 7 8 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 7 2 8 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 7 2 8 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 7 2 4 8

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 7 2 4 8

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 7 2 4 8

Repeat process until all
numbers in correct order.

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

1 2 3 4 5 6 7 8

Repeat process until all
numbers in correct order.

Activity: Bubble Sort

Using the following numbers ‘7 4 1 5 8 3 6 2’ perform a bubble sort
to sort the numbers in a numerical order from smallest to largest.
Afterwards write down the steps you performed to complete this
task in your workbooks.

Again the list of numbers to sort are:

7 4 1 5 8 3 6 2

Merge Sort

Merge Sort is a "divide and conquer" sorting algorithm. We
repeatedly divide the list of numbers into smaller and smaller lists
until each list contains only one item. We then merge these
smaller lists together, making sure that the newly merged list is
sorted. We keep on merging smaller lists into bigger lists until the
whole original list is sorted.

Merge sort is much faster at sorting than Bubble sort. It is important
to remember than Bubble sort is OK for small lists but big lists should
be sorted with a faster sorting algorithm, like Merge sort.

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

6 5 3 1 8 7 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

6 5 3 1 8 7 2 4

6 5 3 1 8 7 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

6 5 3 1 8 7 2 4

6 5 3 1 8 7 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

6 5 3 1 8 7 2 4

6 5 3 1 8 7 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

6 5 3 1 8 7 2 4

5 6

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

8 7 2 4

5 6 1 3

6 5 3 1

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

8 7 2 4

5 6 1 3 7 8

5 6 1 3 7 8 2 4

8 7 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

5 6 1 3 7 8 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 3 5 6

5 6 1 3 7 8 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 3 5 6

5 6 1 3 7 8 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 3 5 6

5 6 1 3 7 8 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 3 5 6

5 6 1 3 7 8 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 3 5 6

5 6 1 3 7 8 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 3 5 6

5 6 1 3 7 8 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 3 5 6

5 6 1 3 7 8 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 3 5 6

5 6 1 3 7 8 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 3 5 6 2 4 7 8

5 6 1 3 7 8 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 3 5 6 2 4 7 8

5 6 1 3 7 8 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 3 5 6 2 4 7 8

5 6 1 3 7 8 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 3 5 6 2 4 7 8

5 6 1 3 7 8 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 3 5 6 2 4 7 8

5 6 1 3 7 8 2 4

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 3 5 6 2 4 7 8

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 3 5 6 2 4 7 8

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 2 3 4 5 6 7 8

1 3 5 6 2 4 7 8

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 2 3 4 5 6 7 8

1 3 5 6 2 4 7 8

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 2 3 4 5 6 7 8

1 3 5 6 2 4 7 8

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 2 3 4 5 6 7 8

1 3 5 6 2 4 7 8

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 2 3 4 5 6 7 8

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

And so on…

Merge Sort

Unlike Bubble Sort, we
repeatedly split the lists into
smaller and smaller lists until
there is only one item in each
list. Then we merge the lists
together making sure the items
are in the correct order.

1 2 3 4 5 6 7 8

Activity: Merge Sort

Using the following numbers, ‘4 8 2 6 7 3 5 1’ perform a merge sort
to sort the numbers in a numerical order from smallest to largest.
Afterwards write down the steps you performed to complete this
task in your workbooks.

The list of numbers to sort is:

4, 8, 2, 6, 7, 3, 5, 1

Search
Algorithms

Linear Search

A linear search is a simple search algorithm where a list is
searched until the required value is found.

For example if the value we are looking for is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Activity: Linear Search

Using the following numbers shown below, perform a linear search
to locate the value ‘42’. Afterwards write down the steps you
performed to complete this task in your workbooks.

The list of numbers to search through is:

7, 14, 21, 28, 35, 42, 49

1

Binary Search

The binary search algorithm (also known as a half interval search)
works like this:
1. The middle value in a sorted list is inspected to see if it matches

the search value.
2. If the middle value is greater than the search value, the upper

half of the list is discarded. If it is less than the search value, the
lower half is discarded.

3. This process is repeated, with the list halving in size each time
until the search value is found.

For example if the value we are searching for is 4.

653 872 4 9 141311 1510 12

1

Binary Search

The binary search algorithm (also known as a half interval search)
works like this:
1. The middle value in a sorted list is inspected to see if it matches

the search value.
2. If the middle value is greater than the search value, the upper

half of the list is discarded. If it is less than the search value, the
lower half is discarded.

3. This process is repeated, with the list halving in size each time
until the search value is found.

For example if the value we are searching for is 4.

653 872 4 9 141311 1510 12

1

Binary Search

The binary search algorithm (also known as a half interval search)
works like this:
1. The middle value in a sorted list is inspected to see if it matches

the search value.
2. If the middle value is greater than the search value, the upper

half of the list is discarded. If it is less than the search value, the
lower half is discarded.

3. This process is repeated, with the list halving in size each time
until the search value is found.

For example if the value we are searching for is 4.

653 72 4

Binary Search

The binary search algorithm (also known as a half interval search)
works like this:
1. The middle value in a sorted list is inspected to see if it matches

the search value.
2. If the middle value is greater than the search value, the upper

half of the list is discarded. If it is less than the search value, the
lower half is discarded.

3. This process is repeated, with the list halving in size each time
until the search value is found.

For example if the value we are searching for is 4.

4

Activity: Binary Search

Using the following numbers shown below, perform a linear search
to locate the value ‘35’. Afterwards write down the steps you
performed to complete this task in your workbooks.

The list of numbers to search through are :

7, 14, 21, 28, 35, 42,
49, 56, 63, 70, 77

(remember with a Binary search algorithm the list of values must
be sorted first before the search is performed)

Extension Activity: Square Root

Newton-Raphson Method for a
Square root algorithm:

𝑎1 =
1
2
𝑎134 +

𝑥
𝑎134

This finds the square root of x.

If x = 25, we choose 𝑎6 = 3

𝑎4 =
1
2
(3 +

25
3
)

𝑎4 = 5.666666

If we repeat these steps
again and again, we then
the answer will approach the
correct square root of 25.

𝑎; =
1
2
(5.666666 +

25
5.666666

)

