
Assembly Language
 Session Plan

Workshop Schedule 2

Introduction - 10 minutes

Hardware - 1 hour 30 minutes

Architecture - 30 minutes

What is Assembly Language? - 30 minutes

Little Man Computer Tasks - 1 hour 20 minutes

Sequences (Maths GCSE) - 30 minutes

Post-Day Questionnaires - 10 minutes

Note: These are estimated times, these will vary between classes, schools etc.
so times will need to be adjusted accordingly.

Total: 4 hours 40 minutes

Learning Outcomes 3

1. No previous knowledge of Assembly Language
programming required.

1. To gain a better understanding of the
fetch-decode-execute cycle.

2. To develop a strong understanding of
programming in assembly language.

3. To develop understanding of
sequences (mathematics GCSE topic)
through assembly language
programming.

Attendee
Prerequisites

Learning
Outcomes

Preparation

1. Ensure all computers have access to https://
peterhigginson.co.uk/LMC/

2. A small handheld whiteboard, a few blank A4
sheets, whiteboard markers, printouts for
visualising activity.

3. Print out assembly language workbook, one for
each student attending workshop.

https://peterhigginson.co.uk/LMC/
https://peterhigginson.co.uk/LMC/
https://peterhigginson.co.uk/LMC/
https://peterhigginson.co.uk/LMC/
https://peterhigginson.co.uk/LMC/
https://peterhigginson.co.uk/LMC/
https://peterhigginson.co.uk/LMC/
https://peterhigginson.co.uk/LMC/

Introduction 4

In this session plan we use the following colours to differentiate the types of
activities:

• Yellow - Explain. Teachers should explain the slide/example to the class.
• Green - Discuss. Teachers should start an open discussion with the class to
get them to feedback some answers/ideas.

• Purple - Activity. Students are expected to complete an activity whether it
be in their workbooks or on the computer, followed by a discussion of their
solutions.

• Green - Introduction/Conclusion. The introduction/conclusion is also
colour coded green. Teachers should hand out materials in the introduction
and conclude the day and collect materials at the end.

Session Plan Key

Begin with introductions, and a brief explanation of the Technocamps
programme, before handing out pre-day questionnaires to be filled out by
the students and teacher.

Introduction

Play the marketing videos of the Surface Pro 5 and the MacBook Pro 2017.
Explain that the students will need to choose which of the laptops they
prefer and give reasons why.

Explain: Surface Pro 5 vs. MacBook Pro 2017

Surface Pro vs Macbook Pro 2017 5

Students should decide which of the two laptops they prefer and justify why,
in their workbooks.

Activity: Surface Pro 5 vs MacBook Pro 2017

The videos the students watched were full of marketing buzzwords that are
designed to sell laptops and technology but which are often misleading or
don’t mean as much as people first think.

“This is the fastest surface pro ever” doesn’t mean much if the performance
increase is only .1%
Similarly “the best retina display in a MacBook” can also be misleading and
discussing how the technology works does little to show users how good a
display the laptop has.

As a result, it is often better to look at the technical specifications of any
piece of technology and use these to gain a better understanding of what
you are actually getting.

Explain: Marketing Nonsense

We are going to open up a desktop, show you the most important
components and then install them one at a time. By the end we should
have a fully functional PC.
We should also understand more about the technology inside computers
and be able to make informed decisions when buying tech.

Explain: Internal Components

Motherboards 6

The motherboard is potentially the most important component with a
computer. It is a PCB that houses most of the essential parts of a computer
system. It is also where most of the connections between the computer and
external devices are contained.

For today, we have pre-installed the motherboard. This is just to avoid
damaging it when we brought it here as well as ensuring we won’t short any
connections later on when we power up the system.

Explain: Motherboard

This is an optional task if suitable for the class.
Show the class a CPU chip and then ask for two sensible volunteers to come
up to the front and seat them.

Extension Activity: Seating a CPU

CPUs 7

If you are the only person in the supermarket and you get to the checkouts,
would you rather have multiple checkouts open or one checkout open with
speedy Gonzales as the cashier?

Certain tasks can not be split up efficiently over multiple cores. For example,
if you tried to check out your shopping over multiple tills then the time
taken for all the items to be scanned may be reduced but you would still
have to go to each individual till to pay and pack up into your trolley. In the
long run this will take more time than just using a single checkout.
As a result, high clock speeds and multiple cores need to be used
effectively in conjunction for very fast computing.

Discuss: Parallelisation

The CPU is the brains of the computer. On most personal computers, the
CPU is housed in a single chip called a microprocessor. The CPU contains
the circuitry which processes the instructions when running any computer
program. The two most important things to worry about when comparing
CPUs is the clock speed and the number of cores.

The clock speed of a CPU is measured in hertz (Hz) and measures how
many instructions a CPU can execute per second. It is analogous to the
speed of a checkout cashier, the faster the cashier the more items it can
scan a second.
A core is the part of a CPU which receives instructions and performs
calculations. The more cores a CPU has, the more instructions and
calculations it can perform simultaneously. The number of cores is
analogous to the number of checkouts open at a super market. More
checkouts open means more people can be served simultaneously.

Explain: CPU

Cooling 8

Explain how the CPU fan sits directly on top of the CPU and is attached to the
motherboard. Ask for two volunteers to come to the front and install the fans
and the power cable for the fan.

Activity: Installing a Fan

The engine of a car produces a lot of heat as it burns fuel. As an engine
gets hotter it starts running less efficiently and if it gets too hot it will break.
To stop this from happening, cars have massive radiators to cool the engine.
The radiators in turn are cooled by air flowing through them.
Many PC components work similarly. As they get hotter they work less
efficiently and if they get too hot they can damage the chips inside which
can break the component. This is especially relevant for CPUs and GPUs.

So we need to cool our system. This is usually done with airflow and fans
but can be done using liquid cooling loops and radiators.

Explain: Cooling

Show the students two RAM sticks. Explain how they are shaped with notches
that fit into the RAM slots. Ask for two volunteers to come to the front and
install the sticks.

Activity: Installing RAM

Memory 9

Your computer needs to be able to store and access data so that programs
can be properly run.

Cache memory is like a goldfish brain. Very small but super quick to access.
Also if your system loses power or is shut down, the data stored in the
cache is lost. This is known as volatile storage.
RAM, random access memory, is like sheets of paper out on your desk. You
can store more data on the sheets than you could in a goldfish brain but it
takes longer to access. Also if you don’t file away your sheets. After using
them they will be lost, similar to the goldfish brain.
Mass storage devices are things like solid state drives and hard drives. They
are analogous to a file or a folder. They can hold loads of data but take
much more time to access the information in them than loose sheets of
paper or a goldfish brain. Most importantly they do not lose the data they
contained within them after a shutdown or power loss. This is known as
non-volatile storage.

Memory capacity is measured in bytes.
Having larger capacity RAM means more space for instructions that can be
stored closer to the processor at any one time which reduces the amount of
time spent swapping data in and out of RAM.

Explain: Memory

Students should fill out the section in their workbooks on memory which
includes volatile/non-volatile memory and memory storage amounts.

Activity: Memory

PCI 10

PCI stands for peripheral component interconnect. These are used inside
PCs for connecting peripherals such as dedicated sound cards, graphic
cards or wireless internet cards.

Expansion slots allow the lifetime of a system to be extended as new
technology becomes available such as newer graphics cards for better
visuals and dedicated ethernet cards for greater data transfer rates.

Explain: PCI

Show the students a hard drive and explain how much data it can store. Ask
for two volunteers to come to the front and install it.

Activity: Installing a Hard Drive

The hard drive wasn’t connected directly to the motherboard, there was no
slot for it. Instead it was connected using a SATA cable. This cable is
designed to transfer lots of data from hard drives or optical drives to the
CPU.

Explain: SATA

Comparing Technology 11

Input devices such as keyboard and mouse provide a way for the user to
input data into the processor and give commands.
Output devices like a monitor present the results of any processing to the
user.

Explain: I/O Device Ports

Overclocking increases the operating speed of a given component.
The target of overclocking is increasing the performance of a major chip or
subsystem, such as the main processor or graphics controller, but other
components, such as system memory (RAM) or system buses (generally on
the motherboard), are commonly involved.

Extension Explain: Overclocking

Bring up the two computers and run through the slides explaining the
differences in hardware. This is a good demonstration of how technology
gets better.

Discuss: eMac (2005) vs. iMac Pro

Students should choose either the Xbox One X and the Playstation 4 Pro or
the HP Envy 13 (2018) and the HP Pavilion 15-cs1006na, google the chosen
items and then compare their tech specs. Decide which is better and why.

Activity: Compare Technology

Architecture 12

Just like the architecture of a building, computer architecture is the way that
a computer is designed to function in terms of hardware.
The most common architecture is known as Von Neumann architecture.
This architecture is made up of:

• CPU - Control unit, Arithmetic unit and registers
• Memory unit - RAM
• Buses - Data/address/control
• Input device - mouse, keyboard
• Output device - monitor, speakers

Von Neumann: This stores both the instructions and the data within the
same memory addresses and uses the same bus for both.
Harvard: This has separate memory addresses for instructions and data
meaning it can run a program and access data simultaneously.

Explain: Architecture

Students to write the parts of the Von Neumann architecture next to their
corresponding label in the diagram given the slides and in their workbooks.

Activity: Von Neumann Architecture

Architecture 13

Von Neumann architecture is more flexible than Harvard architecture. We
have to decide how much memory we are dedicating to instructions and
how much we are dedicating to data in Harvard architecture.
If we set up or system to be able to store lots of data and few instructions,
but then we are required to run a program with little data and lots of
instructions, we may not be able to.
This does not occur in Von Neumann architecture as the same memory
addresses are used for both data and instructions.

Harvard architecture is in theory faster than Von Neumann as it can access
data and instructions simultaneously.

Harvard architecture is more costly to develop due to having two buses
working simultaneously. This complicates the control unit adding to the cost.

Von Neumann architecture is used in general purpose computers that will
be used for many different purposes.
Harvard architecture is used in embedded systems that perform only a few
functions like a burglar alarm.

Explain: Von Neumann vs Harvard

Students to fill out the section on flexibility of Von Neumann architecture vs
Harvard architecture in their workbooks.

Activity: Flexibility

What is an Assembly Language? 14

A CPU cannot directs read source code. Different CPUs may have different
architecture and each different architecture has its own machine language.
This prevents direct source code to machine code translation - we need to
use an assembly language to assemble the code which bridges the gap.
For example, a piece of Python code assembled to run on a 64 bit Windows
machine will not have the same instruction set as the Python code
assembled to run on a 32 bit linux machine.

On the slides there is a simple one line program in Python. Internally it is
converted to an Assembly language. If we wrote the same code directly in
the assembly language we can see it only takes three instructions yet the
two programs provide the same output.

Low-level languages are especially useful when speed of execution is critical
or when writing software which interfaces directly with the hardware, e.g.
device drivers.
Example: the Voyager space prove launched in 1977 is programmed using
an old assembly language. NASA are struggling to find anyone who still has
a working knowledge of the language to keep it going.

Explain: Why Assembly?

Assembly language is a low-level programming language which uses an
assembler to convert a program into machine code. Assembly languages
usually use short mnemonics as instructions and each one is specific to the
computer architecture and operating systems.
Assembly languages are considered to be low-level because they are very
close to machine languages. They are only one step removed from a
computer’s machine language.

Explain: What Is Assembly Language?

LMC 15

LMC is a simulator which mimics von Neumann architecture.
Everything in a computers memory is data. Although programs may seem
different from data, they are treated in exactly the same way: the computer
executes a program, instruction by instruction.
These instructions are the ‘data’ of the fundamental program cycle:
1. Fetch the next instruction
2. Decode it
3. Execute it
Then the next program cycle starts which will process the next instruction.
Even the location of the next instruction is just data.

Explain: Little Man Computer (LMC)

Students to write down what Assembly languages are and when they are
useful in their workbooks.

Activity: What Is an Assembly Language?

The LMC Environment 16

1. Accumulator - This is like the active memory of the simulator. The
majority of our instructions will modify the contents of the accumulator.

2. Program Counter - This shows the current memory location that the
processor is running.

3. Instruction and Address register - This shows which type of instruction
is being used and which memory address it is being used on.

4. Memory Addresses - These are the RAM addresses which are used to
store instructions and data.

5. Input Box - This is where the user inputs are stored initially before being
copied to the accumulator.

6. Output Box - This is where a value is copied to from the accumulator
to display to the user.

Explain: The LMC Environment

Students to fill out the heading names of the environment of LMC in their
workbooks.

Activity: Fill in the Blanks

Explain the Input, Output and Halt instructions, their mnemonics and code
as well as their functions and what happens after these instructions are
completed.

Explain: Input, Output, Halt

Visualising a Program Running 17

Print off the extra resources for this activity. The instructions will each be on
an individual sheet.

The RAM Addresses: You will either need to use 6 boxes labelled 0 to 5 or
just lay them out on a table or sellotape to a wall etc. with space for
instructions underneath.

Accumulator: Get a student to be the accumulator i.e. the working working
memory. This person will be handed numbers on A4 pages and will then
hand these to the arithmetic unit if a calculation is required.

Arithmetic Unit: Get a student to be the arithmetic unit. This person is
required to perform simple calculations when required, such as adding 1 to
the counter.

Program Counter: This person can stand next to the whiteboard and
update the counter each time it is given a new value by the bus.

The Bus: Again another student. For this task we simplify and just use a
single bus whenever we are moving data, they must have a small handheld
whiteboard to write the values on.

Input: The teacher can be the “Input Box” and decide on a value to input.

Output: The Output box can be an area on the whiteboard for writing the
final outputted values.

Discuss: Visualising a Program Running

Visualising a Program Running 18

First line up the instructions in the following addresses:

00: INP 901
01: OUT 902
02: HLT 000

The Counter and Accumulator should begin with 0 as their number. Once this
is set up we can start the activity.

Step 1:
Bus copies value from Counter, Value is 0 so the bus copies the instruction
from address 00.
The bus then shows the instruction to the Control Unit (rest of the class). They
decide what the instruction is and what needs to be done.
They will realise it’s and Input and will need to ask for an input. In this case, the
teacher can be the “user” and write a number on a blank A4 page.
The bus will then copy this to the accumulator.
This step is finished so the bus copies the value from the counter, takes it to
the arithmetic unit who adds 1 and tells the bus the new value, who returns it
to the counter and then the first step is finished.

In Short:
1. Bus copies Value from Counter. Value = 0
2. Bus copies instruction from Address 00
3. Bus shows Control Unit (rest of class)
4. Control Unit decodes and asks for Input
5. Bus copies input from Input Box (Teacher)
6. Bus copies value into Accumulator. Accumulator records the value
7. Bus copies value from Counter
8. Bus takes it to Arithmetic Unit. The Arithmetic Unit adds 1
9. Bus returns to Counter who updates with new value. Counter = 1

Activity: Visualising a Program Running

Visualising a Program Running 19

Step 2:
1. Bus copies value from Counter. Value = 1
2. Bus copies instruction from Address 01
3. Bus shows Control Unit (rest of class)
4. Control Unit decodes and tells bus to copy value from Accumulator to

Output
5. Bus copies Value from Accumulator to Output
6. Bus copies value from Counter
7. Bus takes it to Arithmetic Unit. The Arithmetic Unit adds 1
8. Bus returns to Counter who updates with new value. Counter = 2

Step 3:
1. Bus copies value from Counter. Value = 2
2. Bus copies instruction from Address 02
3. Bus shows Control Unit (rest of class)
4. Control Unit decodes and ends the program

Activity: Visualising a Program Running

Ask the students to summarise what the program did, what instructions
were used, what did the arithmetic unit do?
Emphasise that we are copying values from the memory addresses to the
bus and bus to the accumulator. i.e. at the end of the program all the
instructions and data are still in the memory addresses.

Discuss: What Happened?

Storing, Loading, DAT 20

Explain the Store, Load and DAT instructions, their mnemonics and code as
well as their functions and what happens after these instructions are
completed. Specifically explain the DAT instruction for reserving memory
locations.

Explain: Storing, Loading, DAT

The slides show a simple input and print program written in Python. An
equivalent program is written in Assembly. We are going to run through this
Assembly program by hand on the board to once again demonstrate how a
program is executed.

Explain: Input & Print a Number

Convert the Assembly instructions into their corresponding codes and load
them into the correct memory addresses. Then start the Counter and
Accumulator at 0 and begin executing the instructions one at a time.

Activity: Running a Program

Running a Program 21

Step 1:
1. Bus copies Value from Counter. Value = 0
2. Bus copies instruction from Address 00
3. Bus shows Control Unit (rest of class)
4. Control Unit decodes and asks for Input
5. Bus copies input from Input Box (Teacher)
6. Bus copies value into Accumulator. Accumulator records the value
7. Bus copies value from Counter
8. Bus takes it to Arithmetic Unit. The Arithmetic Unit adds 1
9. Bus returns to Counter who updates with new value. Counter = 1

Step 2:
1. Bus copies value from Counter. Value = 1
2. Bus copies instruction from Address 01
3. Bus shows Control Unit (rest of class)
4. Control Unit decodes and tells bus to copy value from Accumulator to

Memory Address 05
5. Bus copies Value from Accumulator to Memory Address 05
6. Bus copies value from Counter
7. Bus takes it to Arithmetic Unit. The Arithmetic Unit adds 1
8. Bus returns to Counter who updates with new value. Counter = 2

Step 3:
1. Bus copies value from Counter. Value = 2
2. Bus copies instruction from Address 02
3. Bus shows Control Unit (rest of class)
4. Control Unit decodes and tell bus to copy value from Memory Address

05 into Accumulator
5. Bus copies value from Address 05 into Accumulator
6. Bus copies value from Counter
7. Bus takes it to Arithmetic Unit. The Arithmetic Unit adds 1
8. Bus returns to Counter who updates with new value. Counter = 3

Activity: Running a Program

Running a Program 22

Step 4:
1. Bus copies value from Counter. Value = 3
2. Bus copies instruction from Address 03
3. Bus shows Control Unit (rest of class)
4. Control Unit decodes and tells bus to copy blue from Accumulator to

Output
5. Bus copies Value from Accumulator into Output
6. Bus copies value from Counter
7. Bus takes it to Arithmetic Unit. The Arithmetic Unit adds 1
8. Bus returns to Counter who updates with new value. Counter = 4

Step 5:
1. Bus copies value from Counter. Value = 4
2. Bus copies instruction from Address 04
3. Bus shows Control Unit (rest of class)
4. Control Unit decodes and ends the program

Activity: Running a Program

Ask the students to summarise what the program did. Why were variables
stored in box 05, what would happen if we had more commands, where
would the variables be stored?

Discuss: What Happened?

Follow the slides to run through an example of how to think about
constructing Assembly programs.

Explain: How to Write Assembly Programs

Storing and Loading 24

Disclaimer: For the following solutions in the session plan, there may be other
ways of solving them and your pupils may find other some, especially when
getting to the more advanced tasks.

Create a program which takes in and stores two inputs from the user and
outputs the first input followed by the second input.

Activity: Storing and Loading 1

Create a program which takes and stores four inputs from the user and
always outputs the third input.

Activity: Storing and Loading 2

Storing and Loading 25

Create a program which takes in three inputs and outputs them in reverse
order.

Activity: Storing and Loading 3

Explain the Addition and Subtraction instructions, their mnemonics and
code as well as their functions and what happens after these instructions
are completed.

Explain: Addition and Subtraction

Create a program which takes in and stores two inputs from the user and
outputs the sum of them.

Activity: Addition and Subtraction 1

Addition and Subtraction 26

Create a program which takes in three numbers and stores them and then
outputs the sum of the first two numbers with the third subtracted.

Activity: Addition and Subtraction 2

Create a program which takes in a number, doubles it and then outputs the
result.

Activity: Addition and Subtraction 1

Addition and Subtraction 27

Create a program which takes in a number, multiplies it by eight and then
outputs the result.

Explain that this could be done in multiple ways. One way is to use the add
command seven times i.e. First + First + … + First.
The code above works differently. Initially it stores First, then adds First to itself.
Then it “overwrites" the old First value with the new value in the accumulator
= First + First. It then adds the new First value to itself and stores the new
value in the accumulator in the First variable. It then does one final addition
with the newest updated value of First before outputting the final answer. An
example with our input being five is shown below.

INP 5 Accumulator = 5 First = 0
STA First Accumulator = 5 First = 5
ADD First Accumulator = 10 First = 5
STA First Accumulator = 10 First = 10
ADD First Accumulator = 20 First = 10
STA First Accumulator = 20 First = 20
ADD First Accumulator = 40 First = 20
OUT 
HLT

Activity: Addition and Subtraction 2

Addition and Subtraction 28

Create a program which takes in a number and multiplies it by forty.

This example highlights why we add and update a variable in multiplication.
By updating the variable we have reduced the 39 lines of “ADD First” to only
17 total lines of code which is much more efficient. Again an example is
shown below with our input being seven.

INP 7 Accumulator = 7 First = 0 Second = 0
STA First Accumulator = 7 First = 7 Second = 0
STA Second Accumulator = 7 First = 7 Second = 7
ADD First Accumulator = 14 First = 7 Second = 7
STA First Accumulator = 14 First = 14 Second = 7
ADD First Accumulator = 28 First = 14 Second = 7
STA First Accumulator = 28 First = 28 Second = 7
ADD Second Accumulator = 35 First = 28 Second = 7
STA First Accumulator = 35 First = 35 Second = 7
ADD First Accumulator = 70 First = 35 Second = 7
STA First Accumulator = 70 First = 70 Second = 7
ADD First Accumulator = 140 First = 70 Second = 7
STA First Accumulator = 140 First = 140 Second = 7
ADD First Accumulator = 280 First = 140 Second = 7
OUT
HLT

Activity: Addition and Subtraction Challenge

Create a program which allows the user to input numbers indefinitely and
outputs each number.

Activity: Looping 1

Addition and Subtraction 29

At this point you should give each student a copy of the cheat sheet so
they can see the command tables. Then continue by explaining the Branch
Always instruction, its mnemonic and code as well as its function and what
happens after this instruction has been completed.

Explain: Branch Always

Create a program which allows the user to input numbers indefinitely and
outputs the running total after each entry.

Activity: Looping 2

Comparing Values 30

Explain the conditional Branching instructions, their mnemonics and code as
well as their function and what happens after these instructions are
completed.

Explain: Branch If Zero or Positive

In LMC we don’t have “if statements” like we have in Python or other
languages for comparing. The only way to branch based on a condition is to
do a subtraction and then branch based on the result. For example, if we
want to output the biggest number of 2 and 5, we would take 2, subtract 5
and then check if the answer is positive (or zero) or negative. Here’s an
example:

Explain: Comparing Values in Assembly

Conditional Branching 31

Create a program which allows the user to input two numbers and outputs
the smallest number. Hint: if you do a - b and the number is positive, then a is
bigger than b.

Activity: Conditional Branching 1

Create a program which repeatedly allows the user to input two numbers and
checks if they are equal. Only output the number if they are equal.

Activity: Conditional Branching 2

Conditional Branching 32

Create a program which repeatedly takes in inputs and only outputs them if
they are zero.

Activity: Conditional Branching 3

Create a program which outputs everything except zeroes.

Activity: Conditional Branching 4

Conditional Branching

Create a program which allows the user to input two numbers and outputs
the multiplication of the two numbers.

Activity: Conditional Branching Challenge

33

Sequences (Mathematics GCSE) 34

In order to calculate the equation for a given sequence of numbers we
must first look at the difference between them e.g.
Index term: 1 2 3 4 5 …

Number: 3 , 5 , 7 , 9 , 11 …

So the difference between each number is +2. So the number in front of
the nth term in our equation must be 2 i.e. 2n. The final step is to check if
we need to add or subtract from our 2n.

If we try inserting the index term into our nth term equation 2n does the
answer match up correctly? 2 x 1 = 2
So what should we add to correct this? +1
Therefore our equation must be : 2n + 1
Does it work for all the values?

Explain: Sequences

Run through the additional example together as a class, getting the students
to answer each question to calculate the correct equation.

Discuss: Another Example

+2 +2 +2 +2

Sequences (Mathematics GCSE) 35

For the following sequences:
a. Write out the nth term equation.
b. Calculate the 20th term of the sequence.

1. 7, 8, 9, 10, 11 …
2. 3, 6, 9, 12, 15 …
3. 12, 17, 22, 27, 32 …
4. -6, -2, 2, 6, 10 …
5. 3, -3, -9, -15, -21 …

6. a. Write out the first 5 terms of the sequence given by 3n - 7.
 b. Calculate the 15th term of the sequence.

Activity: Sequences

Sequences (Mathematics GCSE) 36

1a) n + 6
1b) 20 + 6 = 26

2a) 3n
2b) 3 x 20 = 60

3a) 5n + 7
3b) (5 x 20) + 7 = 107

4a) 4n - 10
4b) (4 x 20) - 10 = 70

5a) -6n + 9
5b) (-6 x 20) + 9 = -111

6a) -4, -1, 2, 5, 8
6b) (3 x 15) - 7 = 38

Discuss: Solutions

Students to implement this nth term equation in LMC to produce the first 5
terms in the sequence: 5, 6, 7, 8, 9 …

Students should plan how to write this program in pairs. Encourage them to
think about:
What is the nth term equation?
Would you need to use a loop?
What other variables would you need?
Hint: You will need to be adding or subtracting by 1, how could you implement
this?

Activity: Implementing Sequences in LMC

Sequences in LMC 37

Ask the students how they attempted to create the sequence. Did any of
them use a loop? Did they set any variables? If so, what were they?

Discuss: Implementing Sequences in LMC

To get the first result we need
to load the first index term = 1 ,
add 4 to it and then output it.

We always add 4 in our nth
term equation so should store 4
as a variable called number2.

We also need to define a
variable so we know which
index term we are inserting into
our equation.

Explain: The First Value

Sequences in LMC 38

We need to add one to the term variable before we calculate the next
number in our sequence. To do this we define a variable called one which
we add to the term variable. We use a loop to repeat the previous
calculations and output each new number in the sequence.

Explain: Looping for More Values

If we want to stop the loop after 5 values have been output we need to
compare our index term variable to a limit. Once our term reaches the
same value as the limit, we halt the program.

Explain: Only Outputting the First 5 Values

Sequences in LMC 39

You can now use this code as a starting point for creating your own
sequences. What would we change to make the sequence n + 8 for example?

The students should answer the question in
their workbooks and try running the code in
LMC to see if they are correct.

 n - 7
 2n + 4
 2n - 6
 3n + 8
 8n - 3

Activity: Creating Your Own Sequences

For these tasks, the number before the n is achieved by repeating an “ADD
term” instruction the respective amount of times. So for 2n + 4 the only
thing we would do to change the code is insert and ADD term after LDA
term, this is then doubling our term from 1 to 2, hence giving us 2n.

Code for 2n + 4:

Discuss: Solutions

Sequences in LMC 40

2n - 6:
Number of “ADD term” instructions = 1
number2 = -6

3n + 8:
Number of “ADD term” instructions = 2
number2 = -3

8n - 3:
Number of “ADD term” instructions = 7
number2 = -3

In order to find a given nth term, we only need to change the limit to n + 1.
So if we wanted the 20th term in a sequence, we would just change the
limit to 21 and write the final value given.

Discuss: Solutions

Advanced LMC 41

Create a program which takes in input and outputs the positive value. If the
input is negative, you output the positive so if we input -3 we would output 3.

Activity: Advanced LMC 1

Create a program which takes and input, outputs that value and then counts
down and outputs every value until it reaches 0 (or counts up to 0 if the value
input is negative.

Activity: Advanced LMC 2

Advanced LMC 42

Create a program which takes two inputs and checks if they have the same
sign (both positive or both negative). If they have the same sign output a zero,
otherwise output a 1.

Activity: Advanced LMC 3

Advanced LMC 43

Create a program which takes two inputs and returns the remainder if you
divided the first by the second. (Don’t worry about negative numbers, but zero
by a number and dividing a number by zero should be considered.)

Activity: Advanced LMC 4

Note: The Fibonacci sequence is made by adding the previous number to
the current one, starting with 1:

 1
0+1= 1
1+1= 2
2+1= 3
3+2= 5
5+3= 8

Explain: The Fibonacci Sequence

Very Advanced LMC 44

Create a program which takes in an input and outputs all of the numbers in
the Fibonacci sequence up to that input number. The Fibonacci sequence is 1,
1, 2, 3, 5, 8, 13, 21 …
You can set one variable to 1 at the beginning. No cheating!

Activity: Very Advanced LMC

