

Greenfoot
Ecosystems

Activity: What
are Food
Chains?

Food Chains

A food chain shows the flow of
energy from one living thing to
another.

A habitat is the natural home or
environment of an animal, plant, or
another organism.

What is an Organism?

An organism is an individual animal, plant, or single-celled life
form.

Activity: Energy Source

What is the ultimate source of
energy for most living things?

Does anyone know what kind of
cell this is?

Extension: Do you know what 1, 2, 3,
4, 5, 6 and 7 are?

2

3

4

1

5

6

7

Activity: What is a Producer?

A food chain begins with a producer.

In your workbook, write down what you think a producer is?

Can you think of an example of a producer?

?

Producers

Producers are organisms that make their own foods.

Object-
Oriented

Programming

Object-Oriented Programming

Object oriented programming is a way of programming which is
slightly different to (how we usually use) Python.

It is structured differently to Python’s sequential way of coding.

Java uses Classes and Objects.

Does anyone know what these are? Has anyone used them
before?

Objects and Classes

Class:

A sweetened frozen food,
usually made from milk,

typically eaten as a
dessert.

Objects:

Vanilla Ice Cream
Chocolate Ice Cream

Mint Choc Chip Ice Cream
Salted Caramel Ice Cream

Class: Student

Imagine I had a class called
Student, what properties does
a student have i.e. what
makes a student a student?

Class: Student

A class is best understood as the blueprints/template for any
objects of that class. A class describes the behaviour/state that
the object of its type supports.

For example:
Take a class called Student. A specific student would be an
object of the class Student. An example would be a girl named
Jenifer, who is 12 years old, whose favourite subject is Chemistry.
So each of these features would be defined in the class Student.

Object Gender Name Age Favourite
Subject

student1 Female Jenifer 12 Chemistry

student2 Male Tomos 13 History

Class: Student

Student:

Name
Gender

Age
Favourite Subject

Tomos
Male
13
History

Jenifer
Female
12
Chemistry

Luke
Male
15
D&T

Objects

Class

Activity: Actors and World

The classes we are given in
Greenfoot are Actors and
World. If we look at Super
Mario for example, which parts
are the Actors and which parts
are the World?

Discuss with a partner which
objects are part of the Actor
class and which objects are
part of the World class.

Greenfoot

What is Greenfoot?

Greenfoot is an introductory visual programming environment
using the “Java” programming language, a highly valued
language in the Computer Science Industry.

http://www.greenfoot.org/download

Greenfoot Version 2.4.2

The version we will be using is Greenfoot Version 2.4.2 in order to
make sure we’re all on the same page and have the same
methods available to us.

Activity: Greenfoot

First create a scenario:
1. Click on ‘Scenario’ on the top left and then ‘New Scenario’.
2. Name Your Program. Do not call your Scenario “Greenfoot”!

Starting Greenfoot

This creates a folder containing the project file and anything we
create will also be saved automatically in this folder.

Creating a New World

When the Greenfoot window opens it should look like the image
below. To create our world (the environment where the game is
happening):
• Right-click on ‘World’,
• Select the option ‘New subclass’ and name that subclass

‘Habitat’.

When naming classes in Java we always start with a capital letter
and capitalise the first letter of each new word, never with
spaces.

Creating a New World

Choose the ‘Cell’ image

Changing Your World

Now change your ‘World’ by changing the number of ‘cells’ or
‘grids’ in our program. To do this:
1. Right-click on your ‘World’ subclass i.e. ‘Habitat’
2. Click ‘Open editor’

Note: Whenever you change the code in your subclass, do not
forget to click on the ‘compile’ button to update the changes.

Changing the Grid

Currently as default the ‘World’ contains a ‘grid’ of 600x400 with a
size of 1x1 (which translates to a lot of cells, but with a very small
size).

Change it so that it is 8x8 cells, that is to say it should contain 8
rows and 8 columns, and each cell has the size of 60x60 pixels.

Your Program should look like this:

Greenfoot Coordinate System

X,Y 0 1 2 3 4 5 6 7

0 0,0 1,0 2,0 7,0

1 0,1 ..

2 0,2 ..

3

4

5

6

7 0,7 7,7

Y

X

Actors

Below the ‘World’ class, there is an ‘Actor’ class. This class is used
to create objects to be placed into your ‘World’. Objects like:

• Main characters: hero, man, woman...
• Animals: rabbit, wombats...
• Collectables: flowers, ball...

Actors

To create a subclass:
• Right-click on the ‘Actor’
• Select the option ‘new subclass’. We will

name our first ‘Actor’ subclass as ‘Producer’.
• Select the grass image.

Adding Our Actor (Producer) into
the World (Habitat)

Now we need to program inside our ‘World’ subclass ‘Habitat’.
• Right-click on your ‘Habitat’ subclass
• Click ‘Open editor’. This will open up the programming window

for the ‘Habitat’, subclass.
• Use the following line of code:

Question: What is this line of code saying?

Java Syntax

Syntax is what we call the programming rules of a computer
language. In Java we have to finish most but not all lines of code
with a semi colon “;”. Without the semi-colon the programming
file cannot be compiled (i.e. translated for the computer to
understand).

Syntax Error

Greenfoot helpfully highlights any errors in your code.

Java Syntax

{ } Braces (or Curly Braces) are very important in Java. They
are used to group statements and declarations.

[] Brackets (or Square Brackets) are used for indexing a list.

() Parentheses are used to control the order of operations in
an expression and to supply parameters to a method or
function.

Java Syntax

// Double slash is used for single line comments in Java.

/*
* Multiple line comments in Java.
*/

; Every statement in Java ends with a semi-colon.

Naming Conventions

Class: The class name should always start with uppercase.
E.g. MainCharacter

Object: The object name should always start with
lowercase. E.g frogConsumer

Variable: The variable name should start with lowercase
and should have camel case. E.g. scoreCounter

Constant: The constants should be named using upper case.
E.g. MAX_LIFE

Filename: The Java/Scenario file name should start with
uppercase and continue with camel case. E.g.
GameOfLife.java

Difference between Actor and
Actor’s object

Question: what is the difference between the ‘Producer’ and
‘grass1’?
• ‘Producer’ is an Actor.
• ‘grass1’ is an object of type Producer.

Breakdown:
• the Actor ‘Producer’ is a blueprint.
• ‘grass1’ is an object made from that blueprint.

One contains the plans for creating the object. The other is the
object made by those plans/blueprint.

Greenfoot Documentation

Documentation is what we call the material that provides official
information or evidence about the language i.e. Greenfoot.

In Greenfoot there is a whole website that covers all of the pre-
defined methods that are available to the user. These methods
are things like:
• move()
• turn()
• removeTouching()
• setRotation()

To Find The Documentation

Displaying our Actor Objects

There is an object called ‘grass1’ of type ‘Producer’ which is
created in the ‘Habitat’. Note we have just created the object
but it is not automatically displayed.

To display ‘grass1’, use the Greenfoot function ‘addObject();’.

This function is already pre-defined into the Greenfoot program
and can be found in the ‘Greenfoot Class Documentation’ page.
All we have to do is use it.

Using the addObject() Method

To find out how to use this method, utilise the documentation.

It requires three arguments (values) inside the brackets, what do
you think these are?

addObject()

Discuss with the person next to you about how to use the
addObject method. Then try and use the addObject(..., ..., ...)
method to add your Actor object into your ‘Habitat’ world.

addObject()

Does it look like this?

Object Position

The grass is now visible. It is unlikely to have appeared in the very
top left square of the grid.

What values would you have to put into the addObject() function
to achieve this?

What about the bottom right corner?

And the other two?

Add multiple ‘Producer’ objects
into the world

Create and display multiple ‘Producer’ objects into your ‘Habitat’.
Speak to the person next to you and talk about how you think this
is done.

Note: you do not need to make a new Actor subclass!

Extension: Make Your Program
Look Like This

Activity: Name the Process

What is the name of the process in which a producer makes
food?

Extension: Discuss how this process works.

Photosynthesis

Producers are organisms that make their own organic nutrients or
food - usually using energy from sunlight. This process is called,
photosynthesis.
Photosynthesis is the chemical process where plants make
glucose (or carbohydrates) and oxygen, from carbon dioxide and
water, using light energy.

What is a Consumer?

The other organisms in a food chain are consumers, animals that
eat plants or other animals.
They all get their energy by consuming other organisms.

Producer Consumer

Consumer Positions

https://www.bbc.com/bitesize/guides/z2m39j6/revision/1

Activity: Consumers

Producer

Consumer Positions

Producer Primary
Consumer

Secondary
Consumer

Tertiary
Consumer

Example Food Chain

In this example, grass is eaten by grasshoppers, and grasshoppers
are eaten by mice, and mice are eaten by owls.
The arrows between each organism in the chain always point in
the direction of energy flow from the food to the feeder.

Activity: Food Chain

Group organisms on the following slide into producers, consumers,
herbivores and carnivores.

Form some food chains from the provided organisms.

Group organisms on the following slide into primary consumers,
secondary consumers, tertiary consumers (answers depend on
chosen food chain).

Activity: PrimaryConsumer

• Create a second Actor subclass called PrimaryConsumer.
• Set image to a mouse.
• Create two objects of the PrimaryConsumer and get it to

display in the middle of your ‘Habitat’.

Decomposers’ Role in the Food
Chain

What is a Food Web?

A food web is a network of interconnected food chains. It shows
the energy flow through part of an ecosystem.

An ecosystem is a community of animals, plants and
microorganisms, together with the habitat where they live.

Food Web

https://www.bbc.com/bitesize/guides/z2m39j6/revision/2

Food Web

Here are three food chains from the food web on the previous
slide:

• Oak tree → Squirrel → Fox
• Oak tree → Earthworm → Wood mouse → Fox
• Oak tree → Earthworm → Wood mouse → Owl

Activity: Food Web

Using the food web on the following slide:
• Create a food chain with a length of three
• Create a different food chain with the length of four
• Create the longest food chain possible in this food web

Energy Transfer

Energy is transferred along food chains from one level to the next.
However, the amount of available energy decreases from one
level to the next.

Energy Loss: In a food chain, only around 10% of the energy is
passed on to the next organism. The rest of the energy passes out
of the food chain in a number of ways:
• It is used as heat energy.
• It is used for life processes such as movement.
• Faeces and remains are passed to decomposers.

Activity: Energy Transfer

Currently, we know that in a food chain only around 10% of the
energy is passed onto the next level.

Let us say we have a producer (mushrooms):

Its total energy intake is 5000kJ (kilojoules).

What amount of energy would be passed on to the next
consumer if it were eaten? Work in pairs to figure out the answer.

Kilojoules (kJ) – is the measure of energy values in foods.

Activity:
Greenfoot
Ecosystem

Changing the Behaviour of the
Consumers

In order to define what an object can do, or how it behaves, we
can use methods.

Methods are sets of instructions that we can use in our program,
for example we can use methods such as turn() and move() to
turn and move the objects in our world.

Activity: Use Greenfoot
Documentation

Use Greenfoot documentation to research the following methods:
• turn();
• move();
• setRotation();

Speak to the person next to you and talk about these methods,
what you think they do and how you would use them.

Extension: look up methods, isTouching(); and removeTouching():

Activity: Program your Consumer
Objects to Move

Use what you found in the Greenfoot documentation to program
your PrimaryConsumer objects to move by 1 step.

Can you also get your objects to turn or rotate?

Activity: Program your Consumer
Objects to Move

Activity: Random Movement

One way to make our game more fun is to have them moving
around randomly. One way to do this is to use random numbers.

Generate a random number in Greenfoot using the method
Greenfoot.getRandomNumber(___).

For example, Greenfoot.getRandomNumber(4) will return a
random number between 0 and 3.

Using the code above and the methods turn() and move(), get
your PrimaryConsumer objects to move and turn randomly.

If – Else Statements

If statements are used in programming in order to make decisions.
If something is true you can allow a piece of code to run, if it is not
true then it will not run.

General example:

If you are wearing a jumper, raise your hand.

We can extend this to include an ‘Else’ as well:

If you are wearing a jumper, raise your hand. Else, stand up.

If Statement in Greenfoot

If you are wearing a jumper, raise your hand.

In Greenfoot:

Checking for Collisions Between
Objects in the World

When the PrimaryConsumer objects, in this case the ‘mice’, touch
the Producer objects, in this case the ‘grass’, we want to remove
the ‘grass’ objects from the world.

To do this, combine an if statement with the isTouching() method
and the using the removeTouching() method remove the object.

If you have not looked at the Greenfoot documentation on
isTouching() and removeTouching() do it now.

.class

To tell Greenfoot that we want to check for an Actor object
belonging to a subclass we use the .class method.

For example, to check if an object belongs to the Producer
subclass we would write ‘Producer.class’. For PrimaryConsumer
what would it be?

In pairs discuss how do you think you can combine isTouching()’
and a .class method?

.class

• isTouching(Producer.class)
• isTouching(PrimaryConsumer.class)

Extension: How would you use the removeTouching(); method to
remove a PrimaryConsumer object?

How would you use the removeTouching(); method to remove a
Producer object?

Activity: Combining If Statements
and the Methods

Using if statement implement the program so that when the
PrimaryConsumer objects, the ‘mice’, touches the Producer
objects in this case the ‘grass’, we remove the ‘grass’ objects
from the world.

Note: you want to write this code inside the PrimaryConsumer
subclass editor.

Current Program State

Activity: Implement the
SecondaryConsumer Subclass

Using all that we have learned extend your game to do the
following:
• Create a third Actor subclass called SecondaryConsumer.
• Set image to a snake.
• Create an object of the SecondaryConsumer and get it to

display in your ‘Habitat’.
• The SecondaryConsumer should also move randomly like the

PrimaryConsumer but when the it touches a PrimaryConsumer
object it removes it from the world i.e. if the snake touches the
mouse, the mouse disappears.

Game Demo

Extension: Object Interaction

Now alter the game objects to interact with each another. For
example, if two primary consumers touch, get them to produce
an offspring.

To do this, in your ‘Habitat’ add the following code:

This will create a method in our Habitat subclass that will allow us
to create new PrimaryConsumer objects.

Extension: Object Interaction

Using what we have learnt so far, in the PrimaryConsumer, if two
primary consumers touch, we can use the
createPrimaryConsumer() method we just added into the Habitat.
to create another primaryConsumer and add it to our world.

To use this method, we can use the following lines of code:

Extension: Object Interaction

Extension: Object Interaction

The highlighted code in the previous slide you do not need to
understand fully. Just know that when two PrimaryConsumer
objects touch they will call a method called
‘createPrimaryConsumer()’ and will automatically make and add
a new PrimaryConsumer object into the world.

The variables ‘REPRODUCE_DELAY’ and ‘reproduceTimer’ delays
the amount of offsprings made at one time.

Game Demo
With Object
Interaction

More Ideas:
Big Game

Demo

