
Object Oriented GUI
 Session Plan

Object Oriented
Programming

Encapsulation

Inheritance

Abstraction

Polymorphism

Workshop Schedule 1

Introduction - 10 minutes

Object Oriented Programming brief - 10 minutes

Classes, Objects and Methods - 1 hour 30 minutes

Adding a GUI - 20 minutes

Abstraction - 20 minutes

Encapsulation - 20 minutes

Inheritance - 20 minutes

Polymorphism - 20 minutes

Final Activity - 1 hour

Conclusion - 10 minutes

Post-Day Questionnaires - 10 minutes

Note: These are estimated times, these will vary between classes, schools etc.
so times will need to be adjusted accordingly.

Total: 4 hours 50 minutes

Learning Outcomes 2

1. Experience of Python Programming.
2. Experience of programming GUIs in Python.

1. Improved knowledge of classes, methods and
object in Python

2. Knowledge of the object oriented programming
concept abstraction

3. Knowledge of the object oriented programming
concept encapsulation

4. Knowledge of the object oriented programming
concept inheritance

5. Knowledge of the object oriented programming
concept polymorphism

Attendee
Prerequisites

Learning
Outcomes

Preparation

1. Ensure all computers have Python 3 installed and
ready to be used.

2. Print out Object Oriented GUI workbooks, one for each
student attending workshop.

3. Each student will need a pencil for answering questions
in the workbook.

Content Overview 3

In this session plan we use the following colours to differentiate the types of
activities:

• Yellow - Explain. Teachers should explain the slide/example to the class.
• Green - Discuss. Teachers should start an open discussion with the class to
get them to feedback some answers/ideas.

• Purple - Activity. Students are expected to complete an activity whether it
be in their workbooks or on the computer, followed by a discussion of their
solutions.

• Green - Introduction/Conclusion. The introduction/conclusion is also
colour coded green. Teachers should hand out materials in the introduction
and conclude the day and collect materials at the end.

Students are to write the outcomes of each piece of python in their
workbooks. Ask students for their answers and compare. If there are
discrepancies confirm results using python.

Activity: Python Review

Begin with introductions, and a brief explanation of the Technocamps
programme, before handing out pre-day questionnaires to be filled out
by the students and teacher.

Introduction

Session Plan Key

Object Oriented Programming 4

•

Ask the students to write down what they think each concept means.

Activity: Check previous understanding

Each student has to collect the following information about their
classmate(s):

• Name
• Age
• Number of Siblings
• Number of pets
• Teacher/Tutor’s name

Each student should collect information for at least 2 classmates.

Explain that the information they have collected can be turned into a
class and each student can have their own object.

Activity: Collect Information

Object oriented programming makes use of classes, objects and
methods. These classes and objects can share properties and
methods. Object oriented programming has 4 key concepts:

• Abstraction
• Encapsulation
• Inheritance
• Polymorphism

Explain

Classes, Objects and Methods 5

Students should write a class using python reflecting their decisions
from the discussion.
A suitable class name would be Student. The class should have the
properties: name, age, numberOfSiblings, numberOfPets, teacherName.
With regards to default values if all of the class share the same teacher
this would be a good default value. If all of the class are the same age
this would be a good default value however make sure the class also
consider that at some point this default value would not be correct. We
should try to future proof our code.

Activity: Writing Code

Ask students to write their own description of a class in their
workbooks.

Activity: Checking Understanding

Classes are like recipes. They are used to build objects.

To define a class in python we use the keyword class. Show an
example class in python. Indicate the properties within that class.

Explain

Students are to look back at the information they just collected.
• What would we call the class to store this information?
• What properties would the class have?
• What default values could be set, if any?

Discuss

6Classes, Objects and Methods

Students are to select a classmate they collected information about
and create an object to hold that information.

• Which properties do we need to set ourselves?
• Which properties can use the default values, if any?

Activity: Writing Code

Ask students to write their own description of an object in their
workbooks.

Activity: Checking Understanding

An object is an instance of a class.

An object can either use the default values set by the class or it can
set it’s own values. Show an example of an object in python.

Explain

All classes have a function called __init__(), which is always executed
when the class is being initiated. This __init__() function allows you to
assign values to object properties, or complete other operations that
are necessary to do when the object is created.

Explain

7

Methods:
Explain:

Classes, Objects and Methods

• What could our __init__ method look like for this class?
• Do we need to set all of the values?

The __init__ method should have inputs for all of the values that we
wish to set per object. For example if agreed that the teacher value
would not change then there is no need for this to be in the __init__
method, however the other fields are unique to each person and
should therefore be set.

Discuss

Classes can also have other methods that the object can call. Think of
these as instructions.

Explain

If our class was a dog, then what can we tell the dog to do?

Discuss

Ask students to write their own description of a method in their
workbook.

Activity: Checking Understanding

Think of 3 methods that we can use in our class? Write these into your
class and test they work correctly.

Activity: Writing Code

8Adding the GUI

Discuss the GUI code and what it does with the class. Encourage
students to analyse what each line does.
The lambda function is an anonymous function not bound to an
identifier. It is used in our GUI buttons to allow us to send specific data
(parameters) to the method we are calling. If it was not defined as a
Lambda function it would loop.
if __name__ == '__main__': ensures that the code executed is that in the
main method. This is useful when we have multiple files but it good to
future proof code.

Discuss

Students should add the GUI element from their workbook into their
code and ensure all methods still work as expected. Once complete
they should reflect on their drawing from the previous activity and see
if it matches the actual outcome.

Activity: Adding the GUI

Students should draw what they think the GUI will look like into their
workbooks.

Activity: Checking Understanding

Once the class have added the GUI into their program, discuss what
improvements they think can be made.

• Do we know when a student has been added to the list? Have
they all added that print statement?

• Can we enter an invalid date? What are the consequences of
this?

Discuss

9Improving the GUI

Explain the importance of validation. Data should be accurate, up to
date and it it’s not it won’t be useful. Briefly mention GDPR and the
data protection act.

Explain

Students should firstly add a condition to check if the name and age is
present in the entry fields. If it is blank then the student should not be
added.
Students should also copy the validation method from their workbooks
and utilise it in the addStudent method.

Activity: Writing Code

Students should write the importance of validation in their workbooks.

Activity: Checking Understanding

Discuss some previous cases where companies have been fined for
holding incorrect information.

• What are the consequences?
• What about the customer?
• Reputation?

Discuss

10Abstraction

Applying abstraction means that each object should only expose a
high-level mechanism for using it.

Explain

Students should look back at what they initially thought abstraction
meant and write a correct definition of it in their workbooks.
Students should also think of 2 more everyday objects that they see/
use but don’t know what happens behind the scenes. Write down how
they interact with the object and the outcome.

Activity: Checking Understanding

A coffee machine. It does a lot of stuff and makes quirky noises under
the hood. But all you have to do is put in coffee and press a button.

A mobile phone. It has just a few buttons but lots of different
outcomes.

Discuss

11

Explain:

Discuss:

Encapsulation

Encapsulation is achieved when each object keeps its state private,
inside a class. Other objects don’t have direct access to this state.
Instead, they can only call a list of public functions - called methods. In
python __ sets a variable to private.

The first example piece of code
will print the number of seats
which is set in the Car class.

In the second example we try to overwrite the number of seats by
setting the object’s variable __seats to 4. We do this using:
car1.__seats=4
Here the print statement still says the car has 1 seat. car1.__seats does
not overwrite the variable. This is because the variable is private and
can only be modified in the class itself or by calling public methods.

The final example shows a method
h a s b e e n w r i t t e n c a l l e d
“setNumberSeats” which takes in the
object itself and the variable seats and
sets the class variable __seats to be of
that value. Demonstrate that having
the object call this method works when
trying to change the number of seats.

Explain

12Inheritance

Objects are often very similar. They share common logic. But they’re
not entirely the same. So how do we reuse the common logic and
extract the unique logic into a separate class? One way to achieve this is
inheritance. 
It means that you create a (child) class by deriving from another (parent)
class. This way, we form a hierarchy. The child class reuses all fields and
methods of the parent class (common part) and can implement its own
(unique part).

Explain

Person inheritance diagram:
• Person is the main parent class. Teacher and Student are the

subclasses. They inherit everything that a person has.
• A Teacher also has a subject that they teach.
• A Student has Classes and Grades.
• The Teacher class is also the parent class of Public Teacher and

Private Teacher.
• So a Public and Private Teacher inherit everything from the Teacher

class, including the Person values.
• A Private Teacher also has Students and a Public Teacher has a

School.

Discuss

13Inheritance and Polymorphism

Example piece of code:
• The parent class Vehicle has now been created.
• Car is the subclass of Vehicle and inherits all of it’s properties and

methods.
• Here we show a Car object being created using the Vehicle __init__

method.
• The Car also uses the Vehicle’s setNumberSeats method and

printNumberSeats method.

Explain

In the workbooks students must try to match the subclass to the
parent classes.

Activity: Checking Understanding

Polymorphism gives a way to use a class exactly like its parent so there’s
no confusion with mixing types. But each child class keeps its own
methods as they are.
This typically happens by defining a (parent) interface to be reused. It
outlines a bunch of common methods. Then, each child class
implements its own version of these methods.
Polymorphism is perhaps the most complex concept.

• Polymorphism means that different types respond to the same
function.

• Polymorphism is very useful as it makes programming more
intuitive and therefore easier.

Explain

Polymorphism

14Polymorphism

Select two parent classes from the inheritance activity and think of
some methods that would be defined in the parent (interface) class
but only implemented in the child class.

Activity: Checking Understanding

Explain the shape diagram demonstrating polymorphism:
• All shapes can have their surface area calculated.
• All shapes can have their perimeter calculated.
• Each shape has a different implementation of each method. For

example to calculate the surface area of a square it’s length*width.
This does not apply to a circle or a triangle therefore each specific
shape needs it’s own implementation.

Explain

A car and a bike are different types but they are both vehicles. Therefore
we can place them in a list and call the method start().

Explain

Method overriding is another type of polymorphism. In the code we can
see the method start() is defined for a vehicle and for a car and bike. We
are overriding the parent class method. So when we create a vehicle the
vehicle class method will be called, when we create a car the car method
will be called and when we create a bike the bike method will be called.

Explain

15Final Activity

The aim of this activity is to consolidate all of the student's learning
from the session.
Students have to create a GUI Zoo program that holds the following
information.

• 3 Ducks – Daffy, Donald, Daisy. Daffy is 5 years old, Donald is 3
years old and Daisy is 1. How many legs do ducks have? What
sound do they make?

• 2 Giraffes – George and Gerald. George is 7 and Gerald is 10 years
old. How many legs do giraffes have? What sound do they make?

• 1 Elephant – Nelly. Nelly is 12 years old. How many legs do
elephants have? What sound do they make?

• Make a method that prints the following:
“Hello! My name is ____. I am a (type of animal). I have ___ legs. (Sound)”

Tips:
• Students should create 4 classes:Animal (parent class), Duck, Giraffe,

Elephant.
• The animal class should have properties: name, age, legs, sound
• The duck class should set the legs to be 2.
• The giraffes should set the legs to be 4, as do the elephants.
• Each animal class should override the noise/sound method.
• For each animal an object of the correct type should be created.
• The print statement should be a method of the Animal class as all of

the animals can use it.

Extension:
Students can add more types of animals or more methods/properties to
the classes.
Get students to compare each others code and ask them to explain their
code to each other in pairs. This helps them to think about the way
they’ve written the code and also allows them to correct/help out one
another.

Activity: Consolidate

16Conclusion

End the class highlighting the main parts of object oriented
programming.
The four main concepts are:

• Abstraction
• Encapsulation
• Inheritance
• Polymorphism

In order to implement these we need to make use of classes, objects
and methods.

Conclusion

