
Greenfoot
 Session Plan

Workshop Schedule 2

Introduction - 10 minutes

Object-Oriented Programming - 25 minutes

What is Greenfoot? - 5 minutes

Greenfoot - Creating our First Game - 3 hours

Greenfoot - Creating a Jumping Game - 1 hour

Post-Day Questionnaires - 10 minutes

Note: These are estimated times, these will vary between classes, schools etc.
so times will need to be adjusted accordingly.

Total: 4 hours 50 minutes

Learning Outcomes 3

1. Ensure all computers have the correct version of
Greenfoot (2.4.2) installed and ready to be used.

2. Print out workbooks and cheat sheet.

1. Improved understanding of Object-
Oriented programming.

2. Greater experience of programming in
Greenfoot.

Preparation

Learning
Outcomes

Attendee
Prerequisites

1. No previous Greenfoot experience required.

2. Some knowledge of programming required.

Introduction 4

In this session plan we use the following colours to differentiate the types of
activities:

• Yellow - Explain. Teachers should explain the slide/example to the class.
• Green - Discuss. Teachers should start an open discussion with the class to
get them to feedback some answers/ideas.

• Purple - Activity. Students are expected to complete an activity whether it
be in their workbooks or on the computer, followed by a discussion of their
solutions.

• Green - Introduction/Conclusion. The introduction/conclusion is also
colour coded green. Teachers should hand out materials in the introduction
and conclude the day and collect materials at the end.

Session Plan Key

Begin with introductions, and a brief explanation of the Technocamps
programme, before handing out pre-day questionnaires to be filled out by the
students and teacher.

Introduction

What Can a Computer Do? 5

Ask the question “Can a computer do anything a human can’t?” Give the
students 30 seconds to discuss before asking them for an answer. Ask them
to explain their answers.

The answer we want to impress on them is that although computers may be
much quicker, and they can’t make mistakes, there isn’t anything that they can
do that a human being can’t. All we need to do to solve problems like a
computer, is to think like a computer. This is called Computational Thinking
and it just means breaking down a problem into a set of simple instructions
that we can carry out in a certain order.

Discuss: Computers vs. Humans

The students will all need pen and paper and have to complete a set of
instructions by drawing what they are told. They are not allowed to ask
questions and not allowed to look at what others have done until the end.

Instructions:
1. “Draw a square”
2. “Inside the square, draw two smaller squares”
3. “On one side of the square, draw a triangle.”
4. “Inside the square, on the opposite side of where you drew the triangle,

draw a small rectangle.”
5. “The final instruction is: Draw a small rectangle which is half inside the

triangle, and half outside.”

Once they’ve finished, go around the room and see what each person has
ended up with. It is very unlikely that anyone will have drawn a house, but
some may have seen the task before.

Activity: Follow These Instructions

Following Instructions 6

Go through step by step the instructions whilst completing each step on the
whiteboard until you’ve drawn a house. At this point you’ll want to ask why
didn’t anyone draw the house? Whose fault is it? Is it their fault? Is it their
teacher’s fault? Or is it your fault? And more importantly, ask why?

It is in fact your fault as the instructions you gave weren’t simple enough, and
they didn’t give enough information so the students used their initiative to
make a best guess at what to do.

Activity: Follow These Instructions (continued)

Ask who or what else would have the same issues with this kind of task, not
being able to ask questions: A computer

Ask what would a computer do?

A computer wouldn’t have managed to do the first instruction as it may not
know what a square is, and if it did, it wouldn’t do anything as we didn’t say
how big the square needed to be, and where to put it, thickness of the lines etc.

Ask “What if I had just told you all to draw a house instead?”

Not everyone would have drawn the same house, some would have had
fantastically detailed houses with thatched roofs, others would have done a
very simplistic house.

Discuss: Follow These Instructions

Object-Oriented Programming 7

Programming Paradigm is a way of classifying programming languages based
on their features. In simpler terms, it is defined as the style of programming.
There are different programming paradigms.

For example, Python follows a procedural programming paradigm where the
programs are composed of functions. Scratch is an event-driven programming
language just like any Mobile Application programming.

In an event-driven programming, the program is executed only when an event
occurs. Object-oriented programming is the one that Java uses. The concepts
of Object-oriented programming will be covered as part of the workshop.

Explain: Programming Paradigms

In procedural programming, the program is divided into smaller parts called
functions. Functions are more important than data. The functions are written
and tested separately and then assembled to form a complete program.

For example, if you hold an account with a bank, the two main functions that
you can do with the bank account is to deposit money and to withdraw
money. The person who is holding the bank account or the bank where the
bank account is held isn’t as important to the problem statement as the
functions deposit and withdraw money are. While decomposing the problem
we identify the various functions that need to be part of the solution and then
identify the interactions between the functions and how to assemble them
together to automate the solution.

Explain: Procedural Programming

Object-Oriented Programming 8

In object-oriented programming, the program is divided into smaller parts
called objects. Here, the data is more important than the functions that
operate on that data. The solutions are modelled using the real world objects.

For example, in our example of interaction with a bank account, the two main
real world objects are the person who has the bank account and the bank
account itself. The person will interact with the bank account using the
functions deposit or withdraw and they wouldn’t need to know how these are
implemented. The bank account will in-turn will add or subtract the money
based on what function was called by the person. While decomposing a
problem we identify the various objects that need to be part of the solution
and then identify the interactions between the objects.

Explain: Object-Oriented Programming

Explain the differences between Python which most will be familiar with and
object oriented programming. It is a way of programming which is slightly
different to how we would usually use Python, it is structured differently to
Python’s sequential way of coding as Java uses Classes and Objects.

Explain: Sequential vs. OOP

Discuss the benefits of Java as described on the slides.

Discuss: Why Java?

Ask if anyone knows what Classes and Objects are, and if they have used
them before.

Discuss: Classes and Objects

Object-Oriented Programming 9

A class is a framework or a blueprint for an object. It contains all the
information about an object, features, what it can do etc.

An object can only have features and functions which are defined in its class.

For example the class is like a recipe for making ice creams, it gives you all the
information you need to make any ice cream, which is the object itself.

A Class describes the contents of the objects that belong to it: it describes the
properties and the operations/behaviour. Just like a car. We can describe the
properties of a car as transmission type (manual/automatic), steering type
(power steering or not), engine placement (front/back), lights, tyres, convertible
(yes/no) etc. The behaviour of the car would be drive, park, idle etc.

An Object is an element of a class; objects have the behaviours of their class.
The object is the actual component. In our example, a VW Polo, Mini and a VW
Beetle are objects of the class car. They all have the behaviour and the
properties have values which is unique to each object. For example, a Mini is a
convertible where the other two are not. Similarly, the Polo could be an
automatic transmission whereas the other two might not be. Each of these
cars are an object of the class car.

A class called Student will define all of the things that identifies a student. A
student, for example, can be identified by their name, age, and their grade.
They are also defined by their behaviour like doHomework and play etc. For
example, for the class Student, we can have different objects like Tom, Casey,
Luke with different values for their properties but all of them exhibiting the
same behaviour.

Explain: Classes & Objects

Object-Oriented Programming 10

Ask students to identify the class to which the given objects belong to.
Ask students to identify the objects that belong to the class MobilePhones.

Activity: Identify Class and Objects

Ask the students what they think of inheritance in terms of classes? Where
have they heard that term and what do they associate the term with in real
life?

Discuss: Inheritance

Inheritance in Java is a mechanism in which one object acquires all the
properties and behaviours of a parent object. It is an important part of Object-
Oriented programming system. For example, let us assume a class called Box
which has two properties named side length and colour. A new class FilledBox
which is an inherited class of Box will have the same properties but can also
have additional properties like fill and fill colour. If we create objects of the
class FilledBox, they will have all the properties belonging to Box and FilledBox.
Two examples of such objects with the values filled in are shown.

If we have a class called Student, we can have CS Student which is inherited
from Student class and have additional operations/behaviour called
convertToBinary which is specific only to the CS Student class. An object of
Student class will not have the behaviour convertToBinary. Similarly, if we have
another class called French Student which extends from Student class, it can
have its own behaviour named translateToFrench.

The subclasses or the inherited classes are more specialised when compared
to the parent classes which are general. We use inheritance if we want the
classes to be more specific.

Explain: Inheritance in Java

What is Greenfoot? 11

Ask the students to identify the main class or parent class and various
subclasses from the given set of objects.

Activity: Identify Class and Subclasses

Greenfoot is an introductory visual programming environment using the Java
programming language.

It is a great language to learn and incorporates a textual experience of
programming, providing users with great initial programming knowledge and
understanding of basic principles of object-oriented programming.

One of the benefits of using Greenfoot for an introduction into programming is
not only the helpful guides and tutorials available, but also the colourful user
friendly interface.

The version of Greenfoot used for the workshop is 2.4.2 to ensure consistency
with the functions and features used for the workshop.

Explain: What is Greenfoot?

Greenfoot has two main classes.
a) World: A world where all actors live and interact. Every instance of the
World is different, e.g. Jungle, Space, Sea etc.
b) Actor: An object of the Actor exists in the World. Each actor has its own
characteristics and behaviour. E.g. Predator and Prey objects in a Jungle, Aliens
and Astronomer objects in Space, and Fish and Shark objects in Sea. Any
object of an actor should be added to the World for it to be seen in the world.
A Scenario in Greenfoot is equal to Object(s) of Actor Class + World Class +
programming rules.

Explain: World and Actor

What Is Greenfoot? 12

Ask students to discuss and write a list of which objects would be of the class
Actors and which would be of the World class.

This depends on what these things can do, if they move up and down for
example, they cannot be part of the background.

Activity: Actors and World

The Greenfoot World is based on the given coordinate system. The positive x-
axis moves from left to right, just as it does in 8 conventional graphing. The y-
axis, however, moves positively from top to bottom unlike the conventional
graph.

Explain: Greenfoot Coordinate System

The slides for the workshop lead through this activity step by step. Ensure that
you are confident with completing the tasks yourself before delivering the
workshop. See the notes on the slides for more explanation.

Explain: Greenfoot Game

The slides also lists some java syntax that the students need to remember
while writing a java program. Some naming conventions are also given to
ensure the students write consistent code.

Explain: Syntax and Naming Conventions

What Is Greenfoot? 13

The sound file used in this activity is
c a l l e d p o p . w a v a n d c a n b e
downloaded from the link on the
accompanying slides. This file needs to
be placed in the Sound folder of your
scenario’s folder:

Activity: Adding a Sound

setRotation(90*Greenfoot.getRandomNumber(4));

move(1);

When added to the act() method, the collectables will constantly pick a
random direction and move.

Activity: Random Movement of Collectables

Ask how would you add a different amount to the counter every time a
collectable is eaten.

Activity: Adding a Counter

Random Numbers 14

Ask the questions to check how much the students have understood the
concept of classes and objects in terms of World and Actors.

Answers: a) 2 , World and Actor b) 1 frog object c) 3 fly objects d) Yes, Score
Counter is an object of class Actor e) Four subclasses. One for the World, one
for the Frog, one for the Fly and one for the Score Counter.

Activity: Quick Quiz

A loop in programming is a way to repeat one or more statements. The body
of the loop will be repeated while the loop condition is true. Similar to the
repeat block in Scratch, Java has while and for loops. We will use for loops to
create a random number of objects.

for (int i = 0; i < Greenfoot.getRandomNumber(10); i++)
{
 Collectables ant = new Collectables();
 addObject(ant,Greenfoot.getRandomNumber(8),
 Greenfoot.getRandomNumber(8));
}

The for loop has three elements: a) Declaration and initialisation part. We
declare a variable and initialise it. b) Condition part. We check if the variable
declared has met a condition to continue with the execution of the loop body.
c) Change part. We increment the variable every time we complete the
execution of the loop body.

The body of the loop should be enclosed within curly braces. In the body of
the loop we create a new Collectable object and add it to a random location in
the world. The code given should be added in the World subclass.

Explain: Random Number of Objects

Blow Up The Frog 15

Every time the MainCharacter, or the frog object in our case, eats a
Collectable or the fly object, we can increase the size of the frog by a small
value.

We can do so, by using the Image object associated with each object. All
Actor classes have a common method getImage() which returns an Image
object. The Image class in turn has functions like getHeight(), getWidth() and
scale(…) which allows you to get and set the width and height of the image
associated with the object.

Use the following code to scale the image of the MainCharacter object, a frog
in the example, after the removeTouching function is called when the
MainCharacter is touching the Collectable class. This will increase the height
of the frog image by 10 pixels and the width by 10 pixels giving an impression
of blowing up the frog,

g e t I m a g e () . s c a l e (g e t I m a g e () . g e t W i d t h () + 1 0 ,
getImage().getHeight()+10);

Activity: Blow Up The Frog

Extension 16

There is a Greenfoot Project in the resources folder called JumpingGame.
Load this game and show it to the students. The aim is for them to attempt to
create a similar game.

They will need to be shown how to implement jumping and then should be
able to finish off the game using what they already know and using the
documentation and searching the internet.
Firstly create a subclass of World named Background, then a subclass of Actor
named MainCharacter. We will also need to make a subclass of Actor named
Platform for the character to run on.

Once we’ve placed blocks for our floor and placed the character on the blocks,
we should be able to right-click the screen and click “Save the world”. After
doing this, the starting co-ordinate for our character can be found in the
Background code. The y-coordinate is going to be very important!

The first thing we’ll want to do is set our groundHeight for the MainCharacter.
This will be the starting y-coordinate. So we define our private int
groundHeight above the act() method and set it to whatever the y coordinate
is where we placed it.

Remember, in Greenfoot the y-coordinate increases as we move DOWN the
screen.

Next we will need to add movement left and right using the move() method
and left and right arrow keys.

If the up key (or space key) is pressed we want our character to jump.
But we also don’t want our character to jump if he is already jumping!
So we need to define a couple of boolean variables.

Extension: Creating a Jumping Game

Extension 17

private boolean canJump = true;
private boolean jumping = false;

Now we need to tell the game when our character
is allowed to jump and when it is not. i.e. it can only jump, if it is touching the
ground.

This checks the position of our character getY() and compares it to the
groundHeight we defined earlier. If it’s the same then the character must be on
the ground and able to jump. Otherwise, he is in the air and not allowed.
So if the character can jump and the up key is pressed then it will be jumping
so we set jumping = true;

If jumping is true, then we want the character to move upwards to a certain
height before stopping.

Here they move 2 squares repeatedly until they are 10 squares above the
ground before stopping. (note: the -10 is because the y-coordinates go up as
you move DOWN the screen.)

Extension: Creating a Jumping Game (continued)

Finish The Game 18

Once the character has reached the full height of their jump, we need them to
fall back down again. So as they are no longer jumping, but they are not on
the ground we can use an if statement to capture this:

Note that our character is falling slower than they jumped up as it is changing
by 1 this time. Our character should now be able to jump.

Extension: Adding Jumping

From now on the students should be able to add the enemy which moves
across the screen (might need help with the logic of how to move the enemy
with different speeds every time and how to reset position when it reaches the
edge.) Again show them the game whenever they are unsure and ask what
they think is happening and how could they implement it?

Activity: Finish The Game

If they finish the game, have a discussion with them about how they could
develop it, what else could they add or change? Challenge them to attempt
those suggestions (adding more enemies, maybe a power-up which will pause
the enemies briefly etc.)

Discuss: Further Possibilities

