

Computer
Architecture
& Assembly
Language

Surface Pro 5 vs. MacBook Pro 2017

You are going to watch the marketing videos for each of these
laptops.

You need to decide which you would rather and why?

Surface Pro 5

https://www.youtube.com/watch?v=sHp7f00JY8Q

https://www.youtube.com/watch%3Fv=sHp7f00JY8Q

MacBook Pro 2017

https://www.youtube.com/watch?v=1yVF-N__JKk

https://www.youtube.com/watch%3Fv=1yVF-N__JKk

Activity:
Surface Pro 5
vs. MacBook

Pro 2017

Marketing Nonsense

The videos were full of marketing buzzwords that sell items but
don’t really mean anything!

“This is the best speaker system ever implemented on a surface
pro” doesn’t mean much if the old surface pro didn’t even have
one.

To make informed decisions we should look at the tech specs of
comparable systems. Then we should decide on what is best for
the use we have in mind.

Components
of Computer

Systems

Internal Components

Let’s look at what’s inside a laptop or desktop.

We’ll look at what each component does and why they are
important.

When we have worked out what is important and why, we can
make informed decisions about which laptop, phone, or gaming
console is better.

Computer Components

Motherboard

The motherboard is maybe the most important component within
a computer.

It is a PCB (printed circuit board) that connects all the
components of a computer system together. It is also where most
external devices (mouse, keyboard) connect to the computer.

Motherboard

Computer Components

Computer Components

CPU Socket

Extension
Activity:

Seating a CPU

CPU

The CPU (Central Processing Unit) is the ‘brain’ of the computer.
On personal computers and small workstations, the CPU is housed
in a single chip called a microprocessor.
It contains the circuitry which processes the instructions when
running any computer program.

Checkout

Imagine we are at a supermarket at the checkout. We get to the
checkout and Slowpoke Rodriguez, scans 1 item every 5
seconds. That’s not very quick so we are sad.
But Rodriguez goes on break and in comes Speedy Gonzales who
scans 1 items a second. That’s rapid so we are happy.

Clock Speed

• The speed the cashier scans at is an analogy for clock speed.
• The clock speed of the CPU is measured in Hertz and refers to

the number of clock cycles per second that the CPU runs at.
• A CPU with a speed of 5 Gigahertz (5 GHz) can process 5 billion

instructions per second.
• if Speedy Gonzales was a CPU he would have a higher clock

speed than Slowpoke Rodriguez and could execute more
instructions per second.

Checkout

We are back at the supermarket and there is a massive line of
people in the queue.
But then a second checkout assistant comes along and opens a
second checkout. This is great!
The queue of people splits between the two checkouts and this
results in us getting our shopping checked out faster.

Core Count

The number of cores in a CPU is similar to the number of checkout
stations in a supermarket. The more the merrier.
A core is the part of a CPU that receives instructions and performs
calculations, or actions, based on those instructions.
CPUs can have a single core or multiple cores.
In theory, the more cores a processor has, the more sets of
instructions the processor can receive and process at the same
time, which makes the computer faster.

Parallelisation

Activity:
Installing a

Fan

Cooling

Like a car engine has a massive radiator to keep it cool,
components of a computer also need to be kept cool so they
can work effectively.

Graphics cards and CPUs generate a lot of heat. If they get too
hot their performance gets worse and can damage the chips
inside them.

As a result, we need to cool our system. This is normally done using
fans but can be done by using liquid (water normally).

Computer Components

CPU Socket

Computer Components

CPU Socket

RAM Slots

Activity:
Installing RAM

Cache Memory

Cache memory is like the brain of a goldfish. Its super fast to
access but you can’t store much in there unfortunately.

RAM
Random Access Memory

RAM is like sheets of paper on your desk. You can store more
information on them than in a goldfish brain but it takes longer to
access the information and, if not filed away properly after use it
will be lost.

Mass Storage Devices

Hard Disk Drive (HDD) , Solid State Drive are mass storage devices
and are like a file or folder. It can store even more information
than the loose pieces of paper but takes even longer to access
the information stored inside. Most importantly you don’t lose the
sheets in the file when you stop using them.

Storage Measurements

Internal memory in a computer is used for two main purposes:
• to store programs that are being run and
• to store the data that the program works on

Memory is measured in bytes, like KB, GB etc.

Having a greater amount of RAM results in there being more
space for more instructions that can be held close to the
processor at any one time, and this reduces the amount of time
spent swapping data into and out of RAM.

Activity:
Memory

Computer Components

CPU Socket

RAM Slots

Computer Components

CPU Socket

RAM Slots

PCI Slots

PCI
Peripheral Component Interconnect

PCI ports are used inside personal computers for connecting
peripherals such as dedicated sound cards, graphics cards or
wireless internet cards.
Expansion slots allow the life of a computer to be extended, since
new technology can be added as it becomes available like
better graphics cards for games or dedicated ethernet cards for
faster internet access.

Computer Components

CPU Socket

RAM Slots

PCI Slots

Computer Components

CPU Socket

RAM Slots

PCI Slots

SATA Port

Activity:
Installing a
Hard Drive

SATA

SATA (serial advanced technology attachment) is a computer
bus interface for connecting host bus adapters to mass storage
devices such as hard disk drives and optical drives.

Computer Components

CPU Socket

RAM Slots

PCI Slots

SATA Port

I/O Panel

I/O Device Ports

Input devices such as a keyboard, mouse or scanner provide a
way for the user to put data into the processor and to give
commands (e.g. a pointing device like a mouse to click on the
application you want to open, or to select an option from a
menu).
Output devices such as a monitor or printer present the results of
any processing to the user.

Extension: Overclocking

Overclocking increases the
operating speed of a given
component.
The target of overclocking is
increasing the performance of
a major chip or subsystem,
such as the main processor or
graphics controller, but other
components, such as system
memory (RAM) or system
buses (generally on
the motherboard), are
commonly involved.

Hooray!!!

eMac(2005) vs. iMac Pro

Processor and RAM

eMac

Clock speed: 1.42 GHz
Number of Cores: 1
Cache size: 512KB

Standard RAM size: 256MB
Max RAM size: 2GB
Min RAM speed: 333MHz

iMac Pro

Clock speed: 3.2GHz
Number of Cores: 8
Cache size: 11MB

Standard RAM size: 32GB
Max RAM size: 256GB
Min RAM speed: 2666MHz

Storage and Graphics

eMac

Standard VRAM: 64MB
Max VRAM: 64MB

Display support: 17”
Resolution support: 1024x768

Storage: 80 GB HDD

iMac Pro

Standard VRAM: 8GB
Max VRAM: 16GB

Display support: 27”
Native resolution: 5120x2880

Storage: 1TB SSD

Which Would
You Rather

Have?

Activity: Compare Technology

Compare either the Xbox One X and the Playstation 4 Pro or the
HP Envy 13 (2018) and HP Pavilion 15-cs1006na.

Try and find out the following specifications
Processor:
Core/Clock speed:
Weight:
Memory (Internal and External):
Audio/Video capabilities:
Extras:
Compare their performance and identify the one you think is
better for you and write down why.

Computer
Architecture

Computer Architecture

Just like architecture of a building,
computer architecture is the way that a
computer is designed to function in
terms of hardware.
The most common architecture is
known as von Neumann architecture.
This architecture is made up of: A B

C

F

D

E

Computer Architecture

Just like architecture of a building,
computer architecture is the way that a
computer is designed to function in
terms of hardware.
The most common architecture is
known as von Neumann architecture.
This architecture is made up of:
• CPU – Control unit, Arithmetic and

Logic unit and registers

A B

C

F

D

E

Computer Architecture

Just like architecture of a building,
computer architecture is the way that a
computer is designed to function in
terms of hardware.
The most common architecture is
known as von Neumann architecture.
This architecture is made up of:
• CPU – Control unit, Arithmetic and

Logic unit and registers
• Memory unit – RAM

A B

C

F

D

E

Computer Architecture

Just like architecture of a building,
computer architecture is the way that a
computer is designed to function in
terms of hardware.
The most common architecture is
known as von Neumann architecture.
This architecture is made up of:
• CPU – Control unit, Arithmetic and

Logic unit and registers
• Memory unit – RAM
• Buses – Data/address/control

A B

C

F

D

E

Computer Architecture

Just like architecture of a building,
computer architecture is the way that a
computer is designed to function in
terms of hardware.
The most common architecture is
known as von Neumann architecture.
This architecture is made up of:
• CPU – Control unit, Arithmetic and

Logic unit and registers
• Memory unit – RAM
• Buses – Data/address/control
• Input device – Keyboard, mouse

A B

C

F

D

E

Computer Architecture

Just like architecture of a building,
computer architecture is the way that a
computer is designed to function in
terms of hardware.
The most common architecture is
known as von Neumann architecture.
This architecture is made up of:
• CPU – Control unit, Arithmetic and

Logic unit and registers
• Memory unit – RAM
• Buses – Data/address/control
• Input device – Keyboard, mouse
• Output device – Monitor, speakers

A B

C

F

D

E

Computer Architecture

Just like architecture of a building,
computer architecture is the way that a
computer is designed to function in
terms of hardware.
The most common architecture is
known as von Neumann architecture.
This architecture is made up of:
• CPU – Control unit, Arithmetic and

Logic unit and registers
• Memory unit – RAM
• Buses – Data/address/control
• Input device – Keyboard, mouse
• Output device – Monitor, speakers

A B

C

F

D

E

Activity: von
Neumann

Architecture

Computer Architecture

Just like architecture of a building,
computer architecture is the way that a
computer is designed to function in
terms of hardware.
The most common architecture is
known as von Neumann architecture.
This architecture is made up of:
• CPU – Control unit, Arithmetic and

Logic unit and registers
• Memory unit – RAM
• Buses – Data/address/control
• Input device – Keyboard, mouse
• Output device – Monitor, speakers

A B

F

Activity: von
Neumann

Architecture

Computer Architecture

Just like architecture of a building,
computer architecture is the way that a
computer is designed to function in
terms of hardware.
The most common architecture is
known as von Neumann architecture.
This architecture is made up of:
• CPU – Control unit, Arithmetic and

Logic unit and registers
• Memory unit – RAM
• Buses – Data/address/control
• Input device – Keyboard, mouse
• Output device – Monitor, speakers

A B

Activity: von
Neumann

Architecture

Computer Architecture

Just like architecture of a building,
computer architecture is the way that a
computer is designed to function in
terms of hardware.
The most common architecture is
known as von Neumann architecture.
This architecture is made up of:
• CPU – Control unit, Arithmetic and

Logic unit and registers
• Memory unit – RAM
• Buses – Data/address/control
• Input device – Keyboard, mouse
• Output device – Monitor, speakers

B

Activity: von
Neumann

Architecture

Computer Architecture

Just like architecture of a building,
computer architecture is the way that a
computer is designed to function in
terms of hardware.
The most common architecture is
known as von Neumann architecture.
This architecture is made up of:
• CPU – Control unit, Arithmetic and

Logic unit and registers
• Memory unit – RAM
• Buses – Data/address/control
• Input device – Keyboard, mouse
• Output device – Monitor, speakers

Activity: von
Neumann

Architecture

von Neumann vs. Harvard

von Neumann Architecture

This stores both instructions and
data within the same memory
addresses and uses the same
bus for both.

Harvard Architecture

This has separate memory
addresses for instructions and
data meaning it can run a
program and access data
simultaneously.

von Neumann vs. Harvard

von Neumann Harvard
Flexibility

Speed

Cost

Examples

von Neumann vs. Harvard

von Neumann Harvard
Flexibility High level of flexibility as the

memory is shared between
instructions and data so the
amount assigned to each
can fluctuate depending on
the task.

Speed

Cost

Examples

von Neumann vs. Harvard

von Neumann Harvard
Flexibility High level of flexibility as the

memory is shared between
instructions and data so the
amount assigned to each
can fluctuate depending on
the task.

Limited flexibility as there is
only a certain amount of
memory that can be used for
data and a certain amount
for instructions.

Speed

Cost

Examples

von Neumann vs. Harvard

von Neumann Harvard
Flexibility High level of flexibility as the

memory is shared between
instructions and data so the
amount assigned to each
can fluctuate depending on
the task.

Limited flexibility as there is
only a certain amount of
memory that can be used for
data and a certain amount
for instructions.

Speed Speed is limited when
compared to Harvard due to
only having one memory
location and one set of
buses.

Cost

Examples

von Neumann vs. Harvard

von Neumann Harvard
Flexibility High level of flexibility as the

memory is shared between
instructions and data so the
amount assigned to each
can fluctuate depending on
the task.

Limited flexibility as there is
only a certain amount of
memory that can be used for
data and a certain amount
for instructions.

Speed Speed is limited when
compared to Harvard due to
only having one memory
location and one set of
buses.

Two sets of memory and
buses mean data can be
handled more quickly which
would result in decreased
execution time.

Cost

Examples

von Neumann vs. Harvard

von Neumann Harvard
Flexibility High level of flexibility as the

memory is shared between
instructions and data so the
amount assigned to each
can fluctuate depending on
the task.

Limited flexibility as there is
only a certain amount of
memory that can be used for
data and a certain amount
for instructions.

Speed Speed is limited when
compared to Harvard due to
only having one memory
location and one set of
buses.

Two sets of memory and
buses mean data can be
handled more quickly which
would result in decreased
execution time.

Cost Simpler control unit design,
and development of one bus
is cheaper and faster.

Examples

von Neumann vs. Harvard

von Neumann Harvard
Flexibility High level of flexibility as the

memory is shared between
instructions and data so the
amount assigned to each
can fluctuate depending on
the task.

Limited flexibility as there is
only a certain amount of
memory that can be used for
data and a certain amount
for instructions.

Speed Speed is limited when
compared to Harvard due to
only having one memory
location and one set of
buses.

Two sets of memory and
buses mean data can be
handled more quickly which
would result in decreased
execution time.

Cost Simpler control unit design,
and development of one bus
is cheaper and faster.

Control unit for two buses is
more complicated which
adds to the development
cost.

Examples

von Neumann vs. Harvard

von Neumann Harvard
Flexibility High level of flexibility as the

memory is shared between
instructions and data so the
amount assigned to each
can fluctuate depending on
the task.

Limited flexibility as there is
only a certain amount of
memory that can be used for
data and a certain amount
for instructions.

Speed Speed is limited when
compared to Harvard due to
only having one memory
location and one set of
buses.

Two sets of memory and
buses mean data can be
handled more quickly which
would result in decreased
execution time.

Cost Simpler control unit design,
and development of one bus
is cheaper and faster.

Control unit for two buses is
more complicated which
adds to the development
cost.

Examples Typically used in general
purpose computers that will
be used for many different
purposes.

von Neumann vs. Harvard

von Neumann Harvard
Flexibility High level of flexibility as the

memory is shared between
instructions and data so the
amount assigned to each
can fluctuate depending on
the task.

Limited flexibility as there is
only a certain amount of
memory that can be used for
data and a certain amount
for instructions.

Speed Speed is limited when
compared to Harvard due to
only having one memory
location and one set of
buses.

Two sets of memory and
buses mean data can be
handled more quickly which
would result in decreased
execution time.

Cost Simpler control unit design,
and development of one bus
is cheaper and faster.

Control unit for two buses is
more complicated which
adds to the development
cost.

Examples Typically used in general
purpose computers that will
be used for many different
purposes.

Typically used in embedded
systems that only perform few
functions like washing
machines, burglar alarms etc.

Activity:
Flexibility

Assembly
Language

Assembly Language

Assembly language is a low-level programming language which
uses an assembler to convert a program into machine code
which can be run by the computer.
Assembly languages usually use short mnemonics as instructions
and each one is specific to the computer architecture and
operating system.

Little Man Computer

Assembly Language

Assembly languages are considered to be low-level because they
are very close to machine languages. They are only one step
removed from a computer’s machine language.

Machine Code

Assembly Language

C

Python/VB

Hardware

Why
Assembly?

Relationship between Assembly
Language and Machine Code

A CPU cannot directly read source code. Different CPUs may
have different architecture and each different architecture has its
own machine language.
This prevents direct source code to machine code translation –
we need to use an assembly language to assemble the code
which bridges the gap.

For example, a piece of Python code assembled to run on a 64
bit Windows machine will not have the same instruction set as the
Python code assembled to run on a 32 bit Linux machine.

Python à Assembly

Simple one line program in Python:

print(input("Enter a number: "))

Internally, it is converted to an Assembly language which looks
like:

Assembly Language

If we wrote the same code in Assembly language, it would look
like this.

INP

OUT

HLT

We have three lines of Assembly language code instead of eight
which was converted from Python to Assembly and yet doing the
same function as the one in Python.

Why Are Assembly Languages
Used?

Low-level languages are especially useful when speed of
execution is critical or when writing software which interfaces
directly with the hardware, e.g. device drivers.

Why Are Assembly Languages
Used?

Example: The Voyager space probe launched in 1977 (now
outside our solar system) is programmed using an old assembly
language. NASA are struggling to find anyone who still has a
working knowledge of the language to keep it going!

Activity:
What is an
Assembly

Language?

Little Man
Computer

(LMC)

Little Man Computer
(LMC)

Little Man Computer (LMC) is a simulator that mimics von
Neumann architecture.

LMC Lifecycle

Everything in a computer’s memory is data.
Although programs may seem different from data, they are
treated in exactly the same way: the computer executes a
program, instruction by instruction.

These instructions are the ‘data’ of the fundamental program
cycle:
1. fetch the next instruction
2. decode it
3. execute it

Then the next program cycle starts which will process the next
instruction. Even the location of the next instruction is just data.

The LMC Environment

• Accumulator – This is like the active memory of the simulator. The
majority of our instructions will modify the contents of the
Accumulator.

Accumulator

The LMC Environment

• Accumulator – This is like the active memory of the simulator. The
majority of our instructions will modify the contents of the
Accumulator.

• Program Counter – This shows the current memory location that the
processor is running.

Accumulator

Program Counter

The LMC Environment

• Accumulator – This is like the active memory of the simulator. The
majority of our instructions will modify the contents of the
Accumulator.

• Program Counter – This shows the current memory location that the
processor is running.

• Instruction and Address register – This shows which type of
instruction is being used and which memory address it is being used
on.

Accumulator

Program Counter

Instruction and
Address register

The LMC Environment

• Accumulator – This is like the active memory of the simulator. The
majority of our instructions will modify the contents of the
Accumulator.

• Program Counter – This shows the current memory location that the
processor is running.

• Instruction and Address register – This shows which type of
instruction is being used and which memory address it is being used
on.

• Memory Addresses – These are the memory addresses which are
used to store instructions and data.

Accumulator

Program Counter

Instruction and
Address register

Memory Addresses

The LMC Environment

• Accumulator – This is like the active memory of the simulator. The
majority of our instructions will modify the contents of the
Accumulator.

• Program Counter – This shows the current memory location that the
processor is running.

• Instruction and Address register – This shows which type of
instruction is being used and which memory address it is being used
on.

• Memory Addresses – These are the memory addresses which are
used to store instructions and data.

• Input Box – This is where user inputs are stored initially before being
copied to the Accumulator.

Accumulator

Program Counter

Instruction and
Address register

Memory AddressesInput Box

The LMC Environment

• Accumulator – This is like the active memory of the simulator. The
majority of our instructions will modify the contents of the
Accumulator.

• Program Counter – This shows the current memory location that the
processor is running.

• Instruction and Address register – This shows which type of
instruction is being used and which memory address it is being used
on.

• Memory Addresses – These are the memory addresses which are
used to store instructions and data.

• Input Box – This is where user inputs are stored initially before being
copied to the Accumulator.

• Output Box – This is where a value is copied to from the Accumulator
to display to the user.

Accumulator

Program Counter

Instruction and
Address register

Memory AddressesInput Box

Output Box

Activity: Fill in
the Blanks

LMC
Instruction

Set

Taking Input

Name: Input
Mnemonic: INP
Code: 901

Description:
The Input instruction copies the value input by the user into the
Accumulator.

Next Action:
After the value has been copied, the Program Counter will move
onto the next (sequential) memory location.

Providing Output

Name: Output
Mnemonic: OUT
Code: 902

Description:
The Output instruction copies the value in the Accumulator into
the Output Box.

Next Action:
After the value has been copied, the Program Counter will move
onto the next (sequential) memory location.

Stopping the Programming

Name: Halt
Mnemonic: HLT
Code: 000

Description:
The Halt instruction does not affect any of the memory locations
and stops the program.

Next Action:
The execution of the program will stop.

Activity: Visualising a Program
Running

Using a few boxes and a few volunteers we can simulate running
an assembly language program in the classroom. The rest of you
will need to turn to the list of instructions in your workbooks.

The rest of the class are acting as the control unit, deciding what
to do with the instructions and data.

00 01 02

03 04 05

Program
Counter

00
Bus

Accumulator
000

Arithmetic
Unit

Here’s the Program

LMC Code Summary

___ INP ___ - Input
___ OUT ___ - Output
___ HLT ___ - Halt

Storing Data

Name: Store
Mnemonic: STA variable
Code: 3 _ _

Description:
The Store instruction will copy the value from the Accumulator and place
it in an allocated memory location referred to by the variable name
given.

Next Action:
After the value has been copied, the Program Counter will move onto
the next (sequential) memory location.

Retrieving Data

Name: Load
Mnemonic: LDA variable
Code: 5 _ _

Description:
The Load instruction will copy the value stored at the memory location,
given by the variable, into the Accumulator.

Next Action:
After the value has been loaded into the Accumulator, the Program
Counter will move onto the next (sequential) memory location.

Data Memory Locations

Name: Data
Mnemonic: variable DAT xxx
Code: (the data)

Description:
The Data instruction will reserve a memory location to store data. This
location can be referred to by the given variable name.
If you want to give the variable an initial value, replace the xxx with a
value, the default is 0.

Next Action:
After the memory location has been reserved, the Program Counter will
move onto the next (sequential) memory location.

Input & Print a Number

Python Code:

num = int (input("Enter a
number: "))

print (num)

Assembly Language:

INP
STA num
LDA num
OUT
HLT

num DAT

Activity: Running a Program

00 01 02 03 04

05 06 07 08 09

10 11 12 13 14

15 16 17 18 19

Program counter

Instruction register

Address register

Accumulator

How to Write Assembly Programs

Create a program which takes in two inputs and outputs them in
reverse order.

How to Write Assembly Programs

Create a program which takes in two inputs and outputs them in
reverse order.
We have to output the second input before the first. So we know
we are going to have to store the first number at some point.

How to Write Assembly Programs

Create a program which takes in two inputs and outputs them in
reverse order.
We have to output the second input before the first. So we know
we are going to have to store the first number at some point.

INP get the first number
STA number1 store it away for later

How to Write Assembly Programs

Create a program which takes in two inputs and outputs them in
reverse order.
Next up we need to get the second number.

INP get the first number
STA number1 store it away for later
INP get the second number

How to Write Assembly Programs

Create a program which takes in two inputs and outputs them in
reverse order.
We need to output the second number before the first. We could
store the second number but we don’t have to.

INP get the first number
STA number1 store it away for later
INP get the second number
OUT output the second number

How to Write Assembly Programs

Create a program which takes in two inputs and outputs them in
reverse order.
Now we need to output the first number. But we can only output
the number in the accumulator. So we need to load it first.

INP get the first number
STA number1 store it away for later
INP get the second number
OUT output the second number
LDA number1 load the first number from the registry
OUT output the first number

Activity: Storing and Loading

1. Create a program which takes and stores two inputs from the
user and outputs the first input followed by the second input.

2. Create a program which takes and stores four inputs from the
user and always outputs the third input.

3. Create a program which takes in three inputs and outputs
them in reverse order.

LMC Code Summary

___ INP ___ - Input
___ OUT ___ - Output
___ HLT ___ - Halt
___ STA var - Store
___ LDA var - Load
var DAT xxx - Data (Default for xxx is 0)

Addition

Name: Addition
Mnemonic: ADD variable
Code: 1 _ _

Description:
The Add instruction adds the value stored in the given memory location
to the Accumulator.

Next Action:
After the value has been loaded into the Accumulator, the Program
Counter will move onto the next (sequential) memory location.

Subtraction

Name: Subtraction
Mnemonic: SUB variable
Code: 2 _ _

Description:
The Subtraction instruction subtracts the value stored in the given
memory location away from the Accumulator.

Next Action:
After the value has been loaded into the Accumulator, the Program
Counter will move onto the next (sequential) memory location.

Activity: Addition and Subtraction
(1)

Using a pen and paper write LMC programs to solve the
problems.

1. Create a program which takes in and stores two inputs from
the user and outputs the sum of them.

2. Create a program which takes in three numbers and stores
them and then outputs the sum of the first two numbers with
the third subtracted.

When you think you are finished, go to your computer and test it.

Activity: Addition and Subtraction
(2)

In small groups, try and solve the following problems.

1. Create a program which takes in a number, doubles it and
outputs the result.

2. Create a program which takes a number and multiplies it by
eight.

Challenge - Create a program which takes in a number and
multiplies it by forty.

LMC Code Summary

___ INP ___ - Input
___ OUT ___ - Output
___ HLT ___ - Halt
___ STA var - Store
___ LDA var - Load
var DAT xxx - Data (Default for xxx is 0)
___ ADD var - Addition
___ SUB var - Subtraction

Go To (Branch Always)

Name: Branch Always
Mnemonic: BRA variable
Code: 6 _ _

Description:
Updates the Program Counter to the memory location referred to by the
variable given.

Next Action:
After the memory location has been loaded into the program counter,
that memory location will be executed.

Activity: Looping

1. Create a program which allows the user to input numbers
indefinitely and outputs each number.

2. Create a program which allows the user to input numbers
indefinitely and outputs the running total after each entry.

Go To (Branch If Zero)

Name: Branch If Zero
Mnemonic: BRZ variable
Code: 7 _ _

Description:
Updates the Program Counter to the memory location referred to by the
variable given if the value in the Accumulator is equal to zero.

Next Action:
After the memory location has been loaded into the program counter,
that memory location will be executed.

Go To (Branch If Zero or Positive)

Name: Branch If Zero or Positive
Mnemonic: BRP variable
Code: 8 _ _

Description:
Updates the Program Counter to the memory location referred to by the
variable given if the value in the Accumulator is zero or positive.

Next Action:
After the memory location has been loaded into the program counter,
that memory location will be executed.

Comparing Values in LMC

In Little Man Computer we do not have “if statements” like we
have in Python for comparisons. The only way to branch based on
a condition is to do a subtraction and then branch based on the
result.

Comparing Values in LMC

In Little Man Computer we do not have “if statements” like we
have in Python for comparisons. The only way to branch based on
a condition is to do a subtraction and then branch based on the
result.

Comparing Values in LMC

In Little Man Computer we do not have “if statements” like we
have in Python for comparisons. The only way to branch based on
a condition is to do a subtraction and then branch based on the
result.

Split up into 4 sections of code

Comparing Values in LMC

In Little Man Computer we do not have “if statements” like we
have in Python for comparisons. The only way to branch based on
a condition is to do a subtraction and then branch based on the
result.

Load 2, subtract 5 and check
the result. If it is positive, jump to
instruction “outputTwo”

Comparing Values in LMC

In Little Man Computer we do not have “if statements” like we
have in Python for comparisons. The only way to branch based on
a condition is to do a subtraction and then branch based on the
result.

Load 2, subtract 5 and check
the result. If it is positive, jump to
instruction “outputTwo”

Otherwise, carry on, load 5 and
output it before stopping the
program.

Comparing Values in LMC

In Little Man Computer we do not have “if statements” like we
have in Python for comparisons. The only way to branch based on
a condition is to do a subtraction and then branch based on the
result.

Load 2, subtract 5 and check
the result. If it is positive, jump to
instruction “outputTwo”

Otherwise, carry on, load 5 and
output it before stopping the
program.

If it was positive, load 2 and
output it before stopping the
program.

Activity: Conditional Branching

1. Create a program which allows the user to input two numbers
and outputs the smallest number. Hint: if you do a - b and the
number is positive, then a is bigger than b.

2. Create a program which allows the user to repeatedly input
two numbers and checks if they’re equal. Only output the
number if they are equal.

3. Create a program that repeatedly takes in inputs and only
outputs them if they are zero.

4. Similar to 3, create a program which outputs everything
except zeroes.

Challenge - Create a program which allows the user to input two
numbers and outputs the multiplication of the two numbers.

LMC Code Summary

___ INP ___ - Input
___ OUT ___ - Output
___ HLT ___ - Halt
___ STA var - Store
___ LDA var - Load
var DAT xxx - Data (Default for xxx is 0)
___ ADD var - Addition
___ SUB var - Subtraction
___ BRA var - Branch Always
___ BRZ var - Branch If Zero
___ BRP var - Branch If Positive

Sequences (Mathematics GCSE)

In order to calculate the equation for a given sequence of
numbers we must first look at the difference between them e.g.
Index term: 1 2 3 4 5 …

Number: 3 , 5 , 7 , 9 , 11 …

Sequences (Mathematics GCSE)

In order to calculate the equation for a given sequence of
numbers we must first look at the difference between them e.g.
Index term: 1 2 3 4 5 …

Number: 3 , 5 , 7 , 9 , 11 …

+2

Sequences (Mathematics GCSE)

In order to calculate the equation for a given sequence of
numbers we must first look at the difference between them e.g.
Index term: 1 2 3 4 5 …

Number: 3 , 5 , 7 , 9 , 11 …

+2 +2

Sequences (Mathematics GCSE)

In order to calculate the equation for a given sequence of
numbers we must first look at the difference between them e.g.
Index term: 1 2 3 4 5 …

Number: 3 , 5 , 7 , 9 , 11 …

+2 +2 +2

Sequences (Mathematics GCSE)

In order to calculate the equation for a given sequence of
numbers we must first look at the difference between them e.g.
Index term: 1 2 3 4 5 …

Number: 3 , 5 , 7 , 9 , 11 …

+2 +2 +2 +2

Sequences (Mathematics GCSE)

In order to calculate the equation for a given sequence of
numbers we must first look at the difference between them e.g.
Index term: 1 2 3 4 5 …

Number: 3 , 5 , 7 , 9 , 11 …

The difference between each number is +2.
So the number in front of the nth term in our equation must be 2
i.e. 2n

The final step is to check if we need to add or subtract from 2n.

+2 +2 +2 +2

Sequences (Mathematics GCSE)

In order to calculate the equation for a given sequence of
numbers we must first look at the difference between them e.g.
Index term: 1 2 3 4 5 …

Number: 3 , 5 , 7 , 9 , 11 …

If we try inserting the index term into our nth term equation 2n
does the answer match up correctly?

+2 +2 +2 +2

Sequences (Mathematics GCSE)

In order to calculate the equation for a given sequence of
numbers we must first look at the difference between them e.g.
Index term: 1 2 3 4 5 …

Number: 3 , 5 , 7 , 9 , 11 …

If we try inserting the index term into our nth term equation 2n
does the answer match up correctly? 2 x 1 = 2

+2 +2 +2 +2

Sequences (Mathematics GCSE)

In order to calculate the equation for a given sequence of
numbers we must first look at the difference between them e.g.
Index term: 1 2 3 4 5 …

Number: 3 , 5 , 7 , 9 , 11 …

If we try inserting the index term into our nth term equation 2n
does the answer match up correctly? 2 x 1 = 2
What should we add to correct this?

+2 +2 +2 +2

Sequences (Mathematics GCSE)

In order to calculate the equation for a given sequence of
numbers we must first look at the difference between them e.g.
Index term: 1 2 3 4 5 …

Number: 3 , 5 , 7 , 9 , 11 …

If we try inserting the index term into our nth term equation 2n
does the answer match up correctly? 2 x 1 = 2
What should we add to correct this? +1

+2 +2 +2 +2

Sequences (Mathematics GCSE)

In order to calculate the equation for a given sequence of
numbers we must first look at the difference between them e.g.
Index term: 1 2 3 4 5 …

Number: 3 , 5 , 7 , 9 , 11 …

If we try inserting the index term into our nth term equation 2n
does the answer match up correctly? 2 x 1 = 2
What should we add to correct this? +1
Therefore our equation is: 2n + 1

+2 +2 +2 +2

Another Example

The first 5 terms of a sequence are:
-3, -1, 1, 3, 5

What is the difference between each term?

What is the equation so far?

Do we need to add/subtract something to get the right values?

What is the correct equation?

Another Example

The first 5 terms of a sequence are:
-3, -1, 1, 3, 5

What is the difference between each term?

What is the equation so far?

Do we need to add/subtract something to get the right values?

What is the correct equation?

+2

Another Example

The first 5 terms of a sequence are:
-3, -1, 1, 3, 5

What is the difference between each term?

What is the equation so far?

Do we need to add/subtract something to get the right values?

What is the correct equation?

+2

2n

Another Example

The first 5 terms of a sequence are:
-3, -1, 1, 3, 5

What is the difference between each term?

What is the equation so far?

Do we need to add/subtract something to get the right values?

What is the correct equation?

+2

2n

-5

Another Example

The first 5 terms of a sequence are:
-3, -1, 1, 3, 5

What is the difference between each term?

What is the equation so far?

Do we need to add/subtract something to get the right values?

What is the correct equation?

+2

2n

2n - 5

-5

Activity: Sequences

For the following sequences:
a. Write out the nth term equation.
b. Calculate the 20th term in the sequence

1. 7, 8, 9, 10, 11 …
2. 3, 6, 9, 12, 15 …
3. 12, 17, 22, 27, 32 …
4. -6, -2, 2, 6, 10 …
5. 3, -3, -9, -15, -21 …

6. a. Write out the first 5 terms of the sequence given by 3n - 7.
b. Calculate the 15th term of the sequence.

Activity: LMC Example

Now we are going to implement this nth term equation in LMC to
produce the first 5 terms in the sequence: 5, 6, 7, 8, 9.

Using the space in your workbooks discuss with a partner and try
to write down the steps you would need to implement it. Think
about:
• What is the nth term equation?
• Would you need to use a loop?
• What other variables would you need?
• You will need to be adding or subtracting by 1, how could you

implement this?

The First Value

To get the first result we
need to load the first index
term = 1 , add 4 to it and
then output it.

We always add 4 in our nth
term equation so should
store 4 as a variable called
number2.

We also need to define a
variable so we know which
index term we are inserting
into our equation.

Load 1 and add 4 to it.
Then Output the Value 5.

Define Variables: term = 1
number2 = 4

Stop the program.
(StopProgram is a
reference to the Halt
which will be useful later).

Looping for More Values

Now we need to add one to the index term variable before we
calculate the next number in our sequence.
To do this we define a variable called one which we add to the
index term variable.
We use a loop to repeat the previous calculations and output
each new number in the sequence.

Increase the current
term by one and
store it again.

Loop back to the first
line (00) Always.

Only Outputting the First 5 Values

If we want to stop the loop after 5 values have been output we
need to compare our term variable to a limit. Once our term
reaches the same value as the limit, we halt the program.

Check if the term and
limit are the same, if
so jump to the HLT
instruction.

Note: The variable
limit is set to 6. Is this
correct?
Yes, we increment
the loop counter
before checking how
many times we have
looped.

Activity: Creating Your Own
Sequences

You can use this code as a starting point for creating your own
sequences. What would we change to make the sequence n + 8
for example?

n – 7
2n + 4
2n – 6
3n + 8
8n - 3

In your workbooks, answer the
questions and try running the
code in LMC to see if you’re
correct.

Activity: Advanced LMC

1. Create a program which takes in inputs and outputs the
positive value, i.e. if it’s negative, you output the positive, -3
would output 3.

2. Create a program which takes an input, outputs that value
and then counts down and outputs every value until it
reaches 0 (or counts up to 0 if value is negative).

3. Create a program which takes two inputs and checks if they
have the same sign (both positive or both negative). If they
have the same sign output a zero, otherwise output a 1.

4. Create a program which takes two inputs and returns the
remainder if you divided the first by the second. (Don’t worry
about negative numbers, but dividing zero by a number and
diving a number by zero should be considered.)

Activity: Very Advanced LMC

Create a program which takes in an input and outputs all of the
numbers in the Fibonacci sequence up to that input number.
The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21
You can set one variable to 1 at the beginning. No cheating!

Note the Fibonacci sequence is made by adding the previous
number to the current one, starting with 1:

1
0+1=1
1+1=2
2+1=3
3+2=5

