
Object
Oriented

Programming

Python
Review

Python Review
print(“Hello World!”)
print(27+3)
print(2*2)
print(2**2)

myName=“technocamps”
print(myName)

myLastName = input(“Please provide your last name: ”)
print(myLastName)

grade=70
if grade >= 70 :
print(“You got an A”)

elif grade >= 60 :
print(“You got a B”)

else :
print(”You got a C”)

counter=1
while(counter<5):
print(”The counter is ”, counter)
counter+=1

print(“End”)

count=0
for count in range(0,5):
print(“The count is “, count)

print(“End”)

Object
Oriented

Programming

Object Oriented Programming
Object Oriented Programming (OOP) contains:
• Classes with properties and methods
• Objects (instances of the class)

Object Oriented Programming
There are 4 main concepts of OOP:
• Encapsulation
• Abstraction
• Inheritance
• Polymorphism

Activity: Write in your workbooks what you think these concepts mean.

Activity: Collect
Information

Activity: Collect Information
Let’s look back at the information you collected!

Name: Casey
Age: 10
Date of birth:21/05/2008

All of this information is about Students. We can create a class from this.

Classes

Classes
A Class is like recipe. It is used to
build each object.

To create a class, use the
keyword class.

Here we have a class Car with some
defined properties: doors and colour.

Classes Activity
Think back to the information we collected.

What would we call the class to store this information?

What properties would the class have?

What should we set the default property values to? What values do you all share?

Write a class to hold this information.

Objects

Objects
An Object is an instance of the class.

An object can either use the default values set by the class or it can change the
values to suit itself.

uses default values

sets it’s own value for
doors and colours

Objects Activity
Create an object that holds the correct information about your classmate.

Which properties do we need to set ourselves?

Which properties can use the default values?

Methods

Methods
All classes have a function called __init__(), which is always executed when the
class is being initiated.

The __init__() function allows you to assign values to object properties, or
complete other operations that are necessary to do when the object is created.

Methods
Classes can also have other
methods which the object can call.

Think of them as instructions.

If you had an object “Dog” what can
you tell it to do?

Methods

“self” refers to the object that is calling the method.

Methods Activity
Create a method called addStudent that does the following:

• Takes the students name, age, day, month and year of birth and
adds the student to a list of students

Create another method called printStudents that does the following:
• Iterates through the list of students and prints their name, age and

date of birth in dd/mm/yyyy format

Write these into your project and test they work.

Adding the GUI

Adding the GUI
Using the GUI code provided for you in your workbooks make sure your program
works as expected.

https://cstechnocloud.swan.ac.uk/owncloud/index.php/s/r7WWmEzrOqxlhgL

What does the add student button do?
Do we need to add validation?
How do we know a student is added?
What can be done to improve the code?

https://cstechnocloud.swan.ac.uk/owncloud/index.php/s/r7WWmEzrOqxlhgL

Improving the
GUI

Validation
Validation is important because:

• Data should be accurate
• Data should be up to date
• If it is invalid it won’t be useful

Validation

Validation
Firstly add a check to the addStudent method to make sure the name and age
isn’t blank.

Now add the date validation method in your code and validate the date of birth
passed in the addStudent method. Test the following dates:

• 30/02/2003
• 01/03/2000
• 32/12/2001

Improving the GUI
We can actually validate the date using the code below:

import datetime

def validate(d,m,y):
date_string = d+"-"+m+"-"+y
date_format = '%d-%m-%Y’
Result = True
try:

date_obj = datetime.datetime.strptime(date_string, date_format)
except ValueError:

Result = False
print("Date of birth is not valid")

return Result

Object Oriented Programming
There are 4 main concepts of OOP:
• Encapsulation
• Abstraction
• Inheritance
• Polymorphism

Abstraction

Abstraction
Abstraction is the process of removing unnecessary detail and simplifying.
Applying abstraction means that each object should only expose a high-level
mechanism for using it.

Think—a coffee machine. It does a lot of stuff and makes quirky noises under the
hood. But all you have to do is put in coffee and press a button.

Abstraction Activity
Think of other every day objects you see/use but don’t know what goes on behind
the scenes.
Write down how you interact with the object and the outcome.

Encapsulation

Encapsulation
Encapsulation is achieved when each object keeps its state private, inside a class.
Other objects don’t have direct access to this state. Instead, they can only call a
list of public functions—called methods.

In python __ sets a variable to private.

Encapsulation

Encapsulation

Encapsulation

Inheritance

Inheritance
Objects are often very similar. They share common logic. But they’re
not entirely the same.

So how do we reuse the common logic and extract the unique logic into a
separate class? One way to achieve this is inheritance.

It means that you create a (child) class by deriving from another (parent) class.
This way, we form a hierarchy.

The child class reuses all fields and methods of the parent class (common part)
and can implement its own (unique part).

Think – subclass is a type of parent.

Inheritance

Student is a type of person

Private Teacher is a type
of Teacher

Inheritance

Inheritance Activity
Match the subclasses to the parent class. Think carefully about what the
subclasses will inherit.

Some parent classes may have their own parents!

Polymorphism

Polymorphism
Polymorphism gives a way to use a class exactly like its parent so there’s no
confusion with mixing types. But each child class keeps its own methods as they
are.
This typically happens by defining a (parent) interface to be reused. It outlines a
bunch of common methods. Then, each child class implements its own version of
these methods.

Polymorphism is perhaps the most complex concept.
• Polymorphism means that different types respond to the same function.
• Polymorphism is very useful as it makes programming more intuitive and

therefore easier.

Polymorphism

Polymorphism

Polymorphism – Method Overriding

Polymorphism
Interfaces are classes that define the methods but have no implementation:

Select two parent classes from the inheritance activity and think of two or more
methods that would be defined in the parent (interface) class but implemented in
the child class.

Note: Interfaces aren’t always necessary in Python but prove useful for other
languages such as Java.

Zoo Activity

Zoo Activity
Create a GUI program that hold the following information about animals in a zoo.

• 3 Ducks – Daffy, Donald, Daisy. Daffy is 5 years old, Donald is 3 years old and
Daisy is 1. How many legs do ducks have? What sound do they make?

• 2 Giraffes – George and Gerald. George is 7 and Gerald is 10 years old. How
many legs do giraffes have? What sound do they make?

• 1 Elephant – Nelly. Nelly is 12 years old. How many legs do elephants have?
What sound do they make?

• Make a method that prints the following:
“Hello! My name is ____. I am a (type of animal). I have ___ legs. (Noise/Sound)”

Think! What defaults can be set? Do some animals share the same values?

Conclusion
There are 4 main concepts of OOP:
• Encapsulation
• Abstraction
• Inheritance
• Polymorphism

To ensure we use these concepts we need to utilise classes, objects and methods.

