rechnocam
[I ;. (\p}

Object
Oriented
Programming

camps

Python
Review

Python Review

myName="technocamps”
print(myName)

myLastName = input(“Please provide your last name:”)
print(myLastName)

grade=70
if grade >=70:
print(“You got an A")
elif grade >=60:
print(“You got a B”)
else:
print("You got a C”)

counter=1

while(counter<5):
print("The counter is ”, counter)
counter+=1

print(“End”)

count=0

for count in range(0,5):
print(“The count is “ count)

print(“End”)

camps

rechnocam
[I ;. (\p}

Object
Oriented
Programming

rechnocam
[I ;. (\p}

Object Oriented Programming

Object Oriented Programming (OOP) contains:
e Classes with properties and methods
* QObjects (instances of the class)

camps

Object Oriented Programming

There are 4 main concepts of OOP:
* Encapsulation

* Abstraction

* Inheritance

e Polymorphism

Activity: Write in your workbooks what you think these concepts mean.

Activity: Collect
Information

camps

Activity: Collect Information

Let’s look back at the information you collected!
Name: Casey

Age: 10

Date of birth:21/05/2008

All of this information is about Students. We can create a class from this.

camps

Classes

Classes

A Class is like recipe. It is used to
build each object.

To create a class, use the
keyword class.

Here we have a class Car with some
defined properties: doors and colour.

class Car:
doors =
colour =

1

camps

! N Al

A

camps

Classes Activity

Think back to the information we collected.
What would we call the class to store this information?

What properties would the class have?

What should we set the default property values to? What values do you all share?

Write a class to hold this information.

camps

Objects

camps

Objects

An Object is an instance of the class.

An object can either use the default values set by the class or it can change the
values to suit itself.

1 class Car:

2 doors = 1

3 colour = "N/A"

s carl = Car()

¢ print("This ", carl.colour, " has ", carl.doors, " doors") uses default values

carl = Car()

g carl.doors = 4 sets it’s own value for
7 carl.colour = "black
¢ print("This ", carl.colour, " has ", carl.doors, " doors") doors and colours

camps

Objects Activity

Create an object that holds the correct information about your classmate.
Which properties do we need to set ourselves?

Which properties can use the default values?

camps

Methods

camps
Methods

All classes have a function called __init__(), which is always executed when the
class is being initiated.

The __init__() function allows you to assign values to object properties, or
complete other operations that are necessary to do when the object is created.

1 class Car():

2 doors = 1
colour = "N/A"

def __init_ (self,doors,colour):
: self.doors = doors

7 self.colour = colour

carl = Car(4,"black")
print("This", carl.colour,

car has", carl.doors, "doors')

Methods

Classes can also have other
methods which the object can call.

Think of them as instructions.

If you had an object “Dog” what can
you tell it to do?

rechnocamps
L

Methods

class Car():

1
2 doors = 1

3 colour = "N/A"

4

5 def __init_ (self,doors,colour):
£ self.doors = doors

7 self.colour = colour

8

g def start(self):

10 print("Vroom, vroom™)

11

12 carl = Car(4,"black")
12 carl.start()

“self” refers to the object that is calling the method.

camps

Methods Activity

Create a method called addStudent that does the following:

* Takes the students name, age, day, month and year of birth and
adds the student to a list of students

Create another method called printStudents that does the following:

* |terates through the list of students and prints their name, age and
date of birth in dd/mm/yyyy format

Write these into your project and test they work.

camps

Adding the GUI

camps
Adding the GUI

Using the GUI code provided for you in your workbooks make sure your program
works as expected.

https://cstechnocloud.swan.ac.uk/owncloud/index.php/s/r?WWmEzrOagxlhglL

What does the add student button do?
Do we need to add validation?

How do we know a student is added?
What can be done to improve the code?

https://cstechnocloud.swan.ac.uk/owncloud/index.php/s/r7WWmEzrOqxlhgL

nocamps

Improving the
GUI

technocamps

Validation

Validation is important because:
* Data should be accurate
« Data should be up to date
e |Ifitisinvalid it won't be useful

Fairly, lawfully
and transparently

processed

Collected for
specified, explicit
and legitimate
purposes

GDPR
Personal Data
Principles

Adequate,
relevant and
limited to what is
necessary

Identifiable
only for as long
as necessary

Accurate

and
up-to-date

camps

Validation

Prudential fined £50,000 after
inaccurate personal data records lead
to mistaken customer funds transfer

Financial services firm Prudential has been hit with a £50,000 fine
by the UK's data protection watchdog after funds belonging to one
customer were mistakenly transferred out of their account by another
customer who shared the same first name, surname and date of birth.
06 Nov 2012
Six public bodies were fined over personal data security breaches in the last year
despite hundreds of reported cases, a report said today.

One of the biggest penalties went to Midlothian Council as it was fined £140,000
for sending details on children and their carers to the wrong people five times
within 12 months.

Some 281 of the 730 reported breaches were a result of human error, with emails
being sent by mistake and documents being sent to the wrong address, figures
from the Information Commissioner's Office (ICO) showed.

A further 170 were due to data or hardware being stolen and another 108 were as
a result of it being lost.

camps

Validation

Firstly add a check to the addStudent method to make sure the name and age
isn't blank.

Now add the date validation method in your code and validate the date of birth
passed in the addStudent method. Test the following dates:

« 30/02/2003
* 01/03/2000
« 32/12/2001

camps

Improving the GUI

We can actually validate the date using the code below:
import datetime

def validate(d,m,y):
date_string = d+"-"+m+"-"+y
date_format = '%d-%m-%Y’
Result = True
try:
date_obj = datetime.datetime.strptime(date_string, date_format)
except ValueError:
Result = False
print("Date of birth is not valid")
return Result

There are 4 main concepts of OOP:

Object Oriented Programming

Encapsulation
Abstraction
Inheritance
Polymorphism

camps

Abstraction

camps

Abstraction

Abstraction is the process of removing unnecessary detail and simplifying.

Applying abstraction means that each object should only expose a high-level
mechanism for using it.

Think — a coffee machine. It does a lot of stuff and makes quirky noises under the
hood. But all you have to do is put in coffee and press a button.

You have just a few buttons and
inputs to use.

What happens under the hood?
You don't have to know.

Home button

Volume buttons

Charge input
Phone

You

camps

Abstraction Activity

Think of other every day objects you see/use but don't know what goes on behind
the scenes.

Write down how you interact with the object and the outcome.

camps

Encapsulation

camps

Encapsulation

Encapsulation is achieved when each object keeps its state private, inside a class.
Other objects don’t have direct access to this state. Instead, they can only call a
list of public functions — called methods.

In python __ sets a variable to private.

ark
[_/\\//

Encapsulation

class Car():

doors = 1
colour = "N/A"
__seats =1

def __init_ (self,doors,colour):
self.doors = doors
self.colour = colour

def start(self):
print("Vroom, vroom")

def printNumberSeats(self):
print("This car has", self.__seats, "seats")

carl = Car(4,"black")
carl.printNumberSeats()

)can;]\}

(LH

[

Py = \ N
technocamps

Encapsulation

class Car():

doors = 1
colour = "N/A"
_seats =1

def __init_ (self,doors,colour):
self.doors = doors
self.colour = colour

def start(self):
print("Vroom, vroom")

def printNumberSeats(self):

print("This car has", self.__seats, "seats")

carl = Car(4,"black”)
carl.__seats = 4
carl.printNumberSeats()

(LH

[

Py = \ N
technocamps

Encapsulation

class Car():

doors = 1
colour = "N/A"
__seats =1

def __init_ (self,doors,colour):

self.doors = doors
self.colour = colour

def start(self):
print("Vroom, vroom")

def setNumberSeats(self,seats):

self.__seats = seats

def printNumberSeats(self):

print("This car has", self.__

carl = Car(4,"black")
carl.setNumberSeats(4)
carl.printNumberSeats()

seats, "seats")

camps

Inheritance

camps

Inheritance

Objects are often very similar. They share common logic. But they're
not entirely the same.

So how do we reuse the common logic and extract the unique logic into a
separate class? One way to achieve this is inheritance.

It means that you create a (child) class by deriving from another (parent) class.
This way, we form a hierarchy.

The child class reuses all fields and methods of the parent class (common part)
and can implement its own (unique part).

Think - subclassis a type of parent

Child classes take all private
fields and methods from the
parent class.

Inheritance

Teacher

Private Teacher is a type

of Teacher

everything from Person

Subject

Private Teacher

Person

name

email

camps

Student is a type of person

Student

everything from person

Classes

Grades

Child classes can also
add additional fields of
their own.

everything from Teacher

Public Teacher

Students

everything from Teacher

School

* o m

Inheritance

class Vehicle():

doors = 1
colour = "N/A"
__seats =1
wheels = 1

def __init_ (self,doors,colour):

self.doors = doors
self.colour = colour

def start(self):
print("Vroom, vroom")

def setNumberSeats(self,seats):
self.__seats = seats

def printNumberSeats(self):

Eanlaan
technocamps
@

print("This car has", self.__seats, "seats")

class Car(Vehicle):
wheels = 4

carl = Car(4,"black")
carl.setNumberSeats(4)
carl.printNumberSeats()

camps

Inheritance Activity

Match the subclasses to the parent class. Think carefully about what the
subclasses will inherit.

Some parent classes may have their own parents!

camps

Polymorphism

camps

Polymorphism

Polymorphism gives a way to use a class exactly like its parent so there’s no
confusion with mixing types. But each child class keeps its own methods as they
are.

This typically happens by defining a (parent) interface to be reused. It outlines a
bunch of common methods. Then, each child class implements its own version of
these methods.

Polymorphism is perhaps the most complex concept.
* Polymorphism means that different types respond to the same function.

e Polymorphism is very useful as it makes programming more intuitive and
therefore easier.

(=& Y
-
| e P

echno Jca@\p}
@

Polymorphism

Figure Interface

Whoever uses it must
implement:

¢ CalculateSurface()

¢ CalculatePerimeter()

Rectangle

Triangle

Triangle, Circle and Rectangle inherit the Figure
interface or abstract class.

They implement their own versions of
CalculateSurface() and CalculatePerimeter().

They can be used in a mixed collection of Figures.

~la Ve
technocamps

Polymorphism

class Vehicle():

doors = 1
colour = "N/A"
seats = 1

def __init__ (self,doors,colour):
self.doors = doors
self.colour = colour

def start(self):
print("The vehicle is starting: Vroom, vroom")

def setNumberSeats(self,seats):
self.__seats = seats

def printNumberSeats(self):
print("This car has", self.__seats, "seats")

class Car(Vehicle):

wheels = 4

class Bike(Vehicle):

wheels = 2

carl = Car(4,"black")
bikel = Bike(1,"pink")

vehicles = [carl,bikel]
for v in vehicles:

v.start()

rechnocamp

o

Polymorphism - Method Overriding

1 class Vehicle():

2 doors = 1

3 colour = "N/A"

4 _seats =1

5

6 def __init_ (self,doors,colour):

7 self.doors = doors

B self.colour = colour

g

10 def start(self):

11 print("The vehicle is starting: Vroom, vroom")
12

13 def setNumberSeats(self,seats):

14 self.__seats = seats

15

16 def printNumberSeats(self):

17 print("This car has", self.__seats, "seats")
18

12 class Car(Vehicle):

20 wheels = 4

21

22 def start(self):

23 print("The car is starting: Vroom, vroom")
24

25 class Bike(Vehicle):

26 wheels = 2

27

28 def start(self):

29 print("The bike is starting: Vroom, vroom")
30

i1 carl = Car(4,"black")

12 bikel = Bike(1,"pink")

33

34 carl.start()

35 bikel.start()

camps

Polymorphism

Interfaces are classes that define the methods but have no implementation:

def start(self):
raise NotImplementedError

Select two parent classes from the inheritance activity and think of two or more
methods that would be defined in the parent (interface) class but implemented in
the child class.

Note: Interfaces aren’t always necessary in Python but prove useful for other
languages such as Java.

camps

Z00 Activity

camps

/00 Activity

Create a GUI program that hold the following information about animals in a zoo.

e 3 Ducks - Daffy, Donald, Daisy. Daffy is 5 years old, Donald is 3 years old and
Daisy is 1. How many legs do ducks have? What sound do they make?

« 2 Giraffes - George and Gerald. George is 7 and Gerald is 10 years old. How
many legs do giraffes have? What sound do they make?

* 1 Elephant - Nelly. Nelly is 12 years old. How many legs do elephants have?
What sound do they make?

* Make a method that prints the following:
“Hello! My name is ____. | am a (type of animal). | have ___ legs. (Noise/Sound)”

Think! What defaults can be set? Do some animals share the same values?

camps

Conclusion

There are 4 main concepts of OOP:
* Encapsulation

* Abstraction

* Inheritance

e Polymorphism

To ensure we use these concepts we need to utilise classes, objects and methods.

